Skip to main content
Log in

A priori estimates for integro-differential operators with measurable kernels

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The aim of this work is to develop a localization technique and to establish a regularity result for non-local integro-differential operators \({\fancyscript{L}}\) of order \({\alpha\in (0,2)}\) . Thereby we extend the De Giorgi–Nash–Moser theory to non-local integro-differential operators. The operators \({\fancyscript{L}}\) under consideration generate strong Markov processes via the theory of Dirichlet forms. As is well known, regularity properties of the resolvents are important for many aspects of the corresponding stochastic process. Therefore, this work is related to probability theory and analysis, especially partial differential equations, at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels H. and Kassmann M. (2007). An analytic approach to purely nonlocal Bellman equations arising in models of stochastic control. J. Diff. Equ. 236(1): 29–56

    Article  MATH  MathSciNet  Google Scholar 

  2. Adams D.R. and Lewis J.L. (1982). On Morrey–Besov inequalities. Stud. Math. 74(2): 169–182

    MATH  MathSciNet  Google Scholar 

  3. Barlow, M.T., Bass, R.F., Chen, Z.-Q., Kassmann, M.: Non-local Dirichlet forms and symmetric jump processes. Trans. Am. Math. Soc. (in press)

  4. Bass R.F. and Kassmann M. (2005). Hölder continuity of harmonic functions with respect to operators of variable orders. Comm. Partial Diff. Equ. 30: 1249–1259

    Article  MATH  MathSciNet  Google Scholar 

  5. Bass R.F. and Levin D.A. (2002). Harnack inequalities for jump processes. Potential Anal. 17(4): 375–388

    Article  MATH  MathSciNet  Google Scholar 

  6. Bass, R.F., Levin, D.A.: Transition probabilities for symmetric jump processes. Trans. Am. Math. Soc. 354(7), 2933–2953 (electronic) (2002)

    Google Scholar 

  7. Chen Z.-Q. and Kumagai T. (2003). Heat kernel estimates for stable-like processes on d-sets. Stoch. Process. Appl. 108(1): 27–62

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, Z.-Q., Kumagai, T.: Heat kernel estimates for jump processes of mixed types on metric measure spaces. Prob. Theor. Relat. Fields, doi:10.1007/s00440-007-0070-5 (2006)

  9. De Giorgi E. (1957). Sulla differenziabilità e l’analiticitàdelle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. 3: 25–43

    MathSciNet  Google Scholar 

  10. DiBenedetto E., Gianazza U. and Vespri V. (2006). Intrinsic Harnack estimates for nonnegative local solutions of degenerate parabolic equations. Electron. Res. Ann. AMS 12: 95–99

    Article  MATH  MathSciNet  Google Scholar 

  11. Fukushima M. (1977/78). On an L p. Publ. Res. Inst. Math. Sci. 13(1): 277–284

    Article  MathSciNet  Google Scholar 

  12. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, vol. 224, Grundlehren der Mathematischen Wissenschaften, 2nd edn. Springer, Berlin (1983)

  13. Husseini, R., Kassmann, M.: Markov chain approximations to symmetric jump processes. Potential Anal. 27(4), 353–380 (2007)

    Google Scholar 

  14. Husseini, R., Kassmann, M.,: Jump processes, \({\fancyscript{L}}\) -harmonic functions, continuity estimates and the Feller property, see http://www.iam.uni-bonn.de/~kassmann (preprint) (2006)

  15. John F. and Nirenberg L. (1961). On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14: 415–426

    Article  MATH  MathSciNet  Google Scholar 

  16. Komatsu T. (1995). Uniform estimates for fundamental solutions associated with non-local Dirichlet forms. Osaka J. Math. 32(4): 833–860

    MATH  MathSciNet  Google Scholar 

  17. Krylov N.V. and Safonov M.V. (1979). An estimate for the probability of a diffusion process hitting a set of positive measure. Dokl. Akad. Nauk SSSR 245(1): 18–20

    MathSciNet  Google Scholar 

  18. Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and quasilinear elliptic equations. Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York (1968)

  19. Landis, E.M.: Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov. Izdat. “Nauka”, Moscow (1971)

  20. Moser J. (1961). On Harnack’s theorem for elliptic differential equations. Comm. Pure Appl. Math. 14: 577–591

    Article  MATH  MathSciNet  Google Scholar 

  21. Nash J. (1958). Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80: 931–954

    Article  MATH  MathSciNet  Google Scholar 

  22. Netrusov, Yu.V.: Some imbedding theorems for spaces of Besov–Morrey type. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 139:139–147, 1984. Numerical methods and questions in the organization of calculations, 7

  23. Silvestre L. (2006). Hölder estimates for solutions of integro-differential equations like the fractional Laplace. Indiana Univ. Math. J. 55(3): 1155–1174

    Article  MATH  MathSciNet  Google Scholar 

  24. Stampacchia, G.: Èquations elliptiques du second ordre à coefficients discontinus. Séminaire de Mathématiques Supérieures, No. 16 (Été, 1965). Les Presses de l’Université de Montréal, Montreal, Que. (1966)

  25. Tomisaki M. (1979). Some estimates for solutions of equations related to non-local Dirichlet forms. Rep. Fac. Sci. Eng. Saga Univ. Math. 6: 1–7

    Google Scholar 

  26. Triebel, H.: Interpolation theory, function spaces, differential operators. VEB Deutscher Verlag der Wissenschaften, Berlin

  27. Trudinger N.S. (1967). On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure Appl. Math. 20: 721–747

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Kassmann.

Additional information

This work has been support by the German Science Foundation DFG via SFB 611.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kassmann, M. A priori estimates for integro-differential operators with measurable kernels. Calc. Var. 34, 1–21 (2009). https://doi.org/10.1007/s00526-008-0173-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-008-0173-6

Mathematics Subject Classification (2000)

Navigation