Skip to main content
Log in

Schauder Estimates for Nonlocal Equations with Singular Lévy Measures

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In this paper, we establish Schauder’s estimates for the following non-local equations in \(\mathbb {R}^{d}\) :

$$ \partial _t u=\mathscr {L}^{(\alpha )}_{\kappa ,\sigma } u+b\cdot \nabla u+f,\ u(0)=0, $$

where \(\alpha \in (1/2,2)\) and \( b:\mathbb {R}_+\times \mathbb {R}^d\rightarrow \mathbb R\) is an unbounded local \(\beta \)-order Hölder function in x uniformly in t, and \(\mathscr {L}^{(\alpha )}_{\kappa ,\sigma }\) is a non-local \(\alpha \)-stable-like operator with form:

$$ \mathscr {L}^{(\alpha )}_{\kappa ,\sigma }u(t,x):=\int _\mathbb {R}^d\Big (u(t,x+\sigma (t,x)z)-u(t,x)-\sigma (t,x)z^{(\alpha )}\cdot \nabla u(t,x)\Big )\kappa (t,x,z)\nu ^{(\alpha )}(\mathord {\textrm{d}} z), $$

where \(z^{(\alpha )}=z\textbf{1}_{\alpha \in (1,2)}+z\textbf{1}_{|z|\le 1}\textbf{1}_{\alpha =1}\), \(\kappa :\mathbb {R}_+\times \mathbb {R}^{2d}\rightarrow \mathbb {R}_+\) is bounded from above and below, \(\sigma :\mathbb {R}_+\times \mathbb {R}^{d}\rightarrow \mathbb {R}^d\otimes \mathbb {R}^d\) is a \(\gamma \)-order Hölder continuous function in x uniformly in t, and \(\nu ^{\alpha )}\) is a singular non-degenerate \(\alpha \)-stable Lévy measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. Grundlehren der Mathematischen Wissenschaften. vol. 343, pp. xvi+523. Springer, Heidelberg (2011) https://doi.org/10.1007/978-3-642-16830-7

  2. Bae, J., Kassmann, M.: Schauder estimates in generalized Hölder spaces. ArXiv:1505.05498

  3. Bass, R.F.: Regularity results for stable-like operators. J. Funct. Anal. 257(8), 2693–2722 (2009). https://doi.org/10.1016/j.jfa.2009.05.012

    Article  MathSciNet  MATH  Google Scholar 

  4. Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, x+207 (1976)

  5. Chaudru de Raynal, P.É, Honoré, I., Menozzi, S.: Strong regularization by Brownian noise propagating through a weak Hörmander structure. Probab. Theory Relat. Fields. 184(1-2), 1–83 (2022). https://doi.org/10.1007/s00440-022-01150-z

  6. Chaudru de Raynal, P. É, Menozzi, S., Priola, E.: Schauder estimates for drifted fractional operators in the supercritical case. J. Funct. Anal. 278(8), 108425, 57 (2020). https://doi.org/10.1016/j.jfa.2019.108425

  7. Chen, Z. Q., Hao, Z., Zhang, X.: Hölder regularity and gradient estimates for SDEs driven by cylindrical \(\alpha \)-stable processes. Electron. J. Probab. 25, (2020). Paper No. 137, 23 https://doi.org/10.1214/20-ejp542

  8. Chen, Z.Q., Hu, E., Xie, L., Zhang, X.: Heat kernels for non-symmetric diffusion operators with jumps. J. Differ. Equat. 263(10), 6576–6634 (2017). https://doi.org/10.1016/j.jde.2017.07.023

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Z.Q., Song, R., Zhang, X.: Stochastic flows for Lévy processes with Hölder drifts. Rev. Mat. Iberoam. 34(4), 1755–1788 (2018). https://doi.org/10.4171/rmi/1042

  10. Chen, Z.Q., Zhang, X.: \(L^p\)-maximal hypoelliptic regularity of nonlocal kinetic Fokker-Planck operators. J. Math. Pures Appl. (9). 116, 52–87 (2018). https://doi.org/10.1016/j.matpur.2017.10.003 English, with English and French summaries

  11. Chen, Z.Q., Zhang, X., Zhao, G.: Supercritical SDEs driven by multiplicative stable-like Lévy processes. Trans. Amer. Math. Soc. 374(11), 7621–7655 (2021). https://doi.org/10.1090/tran/8343

  12. Ling, C., Zhao, G.: Nonlocal elliptic equation in Hölder space and the martingale problem. J. Differ. Equ. 314, 653–699 (2022). https://doi.org/10.1016/j.jde.2022.01.025

    Article  MATH  Google Scholar 

  13. Dong, H., Kim, D.: Schauder estimates for a class of non-local elliptic equations. Discret. Contin. Dyn. Syst. 33(6), 2319–2347 (2013). https://doi.org/10.3934/dcds.2013.33.2319

    Article  MathSciNet  MATH  Google Scholar 

  14. Fujiwara, T., Kunita, H.: Canonical SDE’s based on semimartingales with spatial parameters. I. Stochastic flows of diffeomorphisms. Kyushu J. Math. 53(2), 265–300 (1999)

  15. Kühn, F.: Schauder estimates for equations associated with Lévy generators. Integr. Equ. Oper. Theory. 91(2), Art. 10, 21 (2019). https://doi.org/10.1007/s00020-019-2508-4

  16. Kulczycki, T., Kulik, A., Ryznar, M.: On weak solution of SDE driven by inhomogeneous singular Lévy noise. Trans. Amer. Math. Soc. 375(7), 4567–4618 (2022). https://doi.org/10.1090/tran/8612

    Article  MathSciNet  MATH  Google Scholar 

  17. Kulik, A.M.: On weak uniqueness and distributional properties of a solution to an SDE with \(\alpha \)-stable noise. Stochastic Process. Appl. 129(2), 473–506 (2019). https://doi.org/10.1016/j.spa.2018.03.010

    Article  MathSciNet  MATH  Google Scholar 

  18. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin (2001)

  19. Hao, Z., Wu, M., Zhang, X.: Schauder estimates for nonlocal kinetic equations and applications. J. Math. Pures Appl. (9). 140, 139–184 (2020). https://doi.org/10.1016/j.matpur.2020.06.003 English, with English and French summaries

  20. Imbert, C., Jin, T., Shvydkoy, R.: Schauder estimates for an integro-differential equation with applications to a nonlocal Burgers equation. Ann. Fac. Sci. Toulouse Math. (6). 27(4), 667–677 (2018). https://doi.org/10.5802/afst.1581 English, with English and French summaries

  21. Krylov, N.V.: Lectures on elliptic and parabolic equations in Hölder spaces. Graduate Studies in Mathematics, vol. 12. American Mathematical Society, Providence, RI (1996). https://doi.org/10.1090/gsm/012

  22. Krylov, N.V., Priola, E.: Poisson stochastic process and basic Schauder and Sobolev estimates in the theory of parabolic equations. Arch. Ration. Mech. Anal. 225(3), 1089–1126 (2017). https://doi.org/10.1007/s00205-017-1122-3

    Article  MathSciNet  MATH  Google Scholar 

  23. Priola, E.: Pathwise uniqueness for singular SDEs driven by stable processes. Osaka J. Math. 49(2), 421–447 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Silvestre, L.: On the differentiability of the solution to an equation with drift and fractional diffusion. Indiana Univ. Math. J. 61(2), 557–584 (2012). https://doi.org/10.1512/iumj.2012.61.4568

    Article  MathSciNet  MATH  Google Scholar 

  25. Song, R., Xie, L.: Weak and strong well-posedness of critical and supercritical SDEs with singular coefficients. J. Differ. Equ. 362, 266–313 (2023). https://doi.org/10.1016/j.jde.2023.03.007

    Article  MathSciNet  MATH  Google Scholar 

  26. Song, Y., Zhang, X.: Regularity of density for SDEs driven by degenerate Lévy noises. Electron. J. Probab. 20, no. 21, 27 (2015). https://doi.org/10.1214/EJP.v20-3287

  27. Tanaka, H., Tsuchiya, M., Watanabe, S.: Perturbation of drift-type for Lévy processes. J. Math. Kyoto Univ. 14, 73–92 (1974). https://doi.org/10.1215/kjm/1250523280

    Article  MathSciNet  MATH  Google Scholar 

  28. Triebel, H.: Theory of function spaces. II, Monographs in Mathematics, vol. 84. Birkhäuser Verlag, Basel, (1992). https://doi.org/10.1007/978-3-0346-0419-2

  29. Wang, F.Y., Zhang, X.: Degenerate SDE with Hölder-Dini drift and non-Lipschitz coefficient. SIAM J. Math. Anal. 48(3), 2189–2226 (2016). https://doi.org/10.1137/15M1023671

  30. Zhang, X., Zhao, G.: Dirichlet problem for supercritical non-local operators. Available at ArXiv:1809.05712

  31. Zhao, G.: Regularity properties of jump diffusions with irregular coefficients. J. Math. Anal. Appl. 502(1), Paper No. 125220, 29 (2021). https://doi.org/10.1016/j.jmaa.2021.125220

Download references

Acknowledgements

We are grateful to Stéphane Menozzi, Xicheng Zhang and Guohuan Zhao for their useful suggestions for this paper.

Funding

Zimo Hao is grateful for the financial support of NNSFC grants of China (Nos. 12131019, 11731009), and the DFG through the CRC 1283 “Taming uncertainty and profiting from randomness and low regularity in analysis, stochastics and their applications”. Mingyan Wu is partially supported by the National Natural Science Foundation of China (Grant No. 12201227 and No. 61873320).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyan Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Z., Wang, Z. & Wu, M. Schauder Estimates for Nonlocal Equations with Singular Lévy Measures. Potential Anal (2023). https://doi.org/10.1007/s11118-023-10101-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11118-023-10101-9

Keywords

Mathematics Subject Classification (2010)

Navigation