Skip to main content
Log in

An integer degree for asymptotically conical self-expanders

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We establish the existence of an integer degree for the natural projection map from the space of parameterizations of asymptotically conical self-expanders to the space of parameterizations of the asymptotic cones when this map is proper. As an application we show that there is an open set in the space of cones in \({\mathbb {R}}^3\) for which each cone in the set has a strictly unstable self-expanding annuli asymptotic to it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angenent, S.B.: Shrinking doughnuts. In: Nonlinear Diffusion Equations and Their Equilibrium States 3 (Gregynog, 1989), Progress in Nonlinear Differential Equations and Their Applications, vol. 7, pp. 21–38. Birkhäuser, Boston (1992)

  2. Angenent, S.B., Ilmanen, T., Chopp, D.L.: A computed example of non-uniqueness of mean curvature flow in \({\mathbb{R}}^{3}\). Commun. Partial Differ. Equ. 20(11–12), 1937–1958 (1995)

    Article  Google Scholar 

  3. Bernstein, J.: Asymptotic structure of almost eigenfunctions of drift Laplacians on conical ends. Am. J. Math. 142(6), 1897–1929 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernstein, J., Wang, L.: The space of asymptotically conical self-expanders of mean curvature flow. Math. Ann. 380, 175–230 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bernstein, J., Wang, L.: Smooth compactness for spaces of asymptotically conical self-expanders of mean curvature flow. Int. Math. Res. Not. 2021(12), 9016–9044 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ding, Q.: Minimal cones and self-expanding solutions for mean curvature flows. Math. Ann. 376, 359–405 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ecker, K., Huisken, G.: Mean curvature evolution of entire graphs. Ann. Math. (2) 130(3), 453–471 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fong, F., McGrath, P.: Rotational symmetry of asymptotically conical mean curvature flow self-expanders. Commun. Anal. Geom. 27(3), 599–618 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, Reprint of the 1998 Edition, Classics in Mathematics. Springer, Berlin (2001)

  10. Grigor’yan, A.: Heat Kernel and Analysis on Manifolds, AMS/IP Studies in Advanced Mathematics, vol. 47. American Mathematical Society, International Press, Providence, Boston (2009)

  11. Helmensdorfer, S.: A model for the behaviour of fluid droplets based on mean curvature flow. Preprint arxiv:1102.3546

  12. Ilmanen, T.: Lectures on mean curvature flow and related equations, Unpublished Notes. https://people.math.ethz.ch/~ilmanen/papers/notes.ps

  13. Smale, S.: An infinite dimensional version of Sard’s theorem. Am. J. Math. 87, 861–866 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  14. White, B.: The space of \(m\)-dimensional surfaces that are stationary for a parametric elliptic functional. Indiana Univ. Math. J. 36(3), 567–602 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. White, B.: The space of minimal submanifolds for varying Riemannian metrics. Indiana Univ. Math. J. 40(1), 161–200 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Bernstein.

Additional information

Communicated by A. Neves.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was partially supported by the NSF Grant DMS-1609340. The second author was partially supported by the NSF Grants DMS-1406240 and DMS-1834824, an Alfred P. Sloan Research Fellowship, and the office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin-Madison with funding from the Wisconsin Alumni Research Foundation and a Vilas Early Investigator Award.

Appendix A. Poincaré inequality

Appendix A. Poincaré inequality

Proposition A.1

Let \(\Sigma \in \mathcal {ACH}_{n}^{k,\alpha }\) be a self-expander. For \(\beta \ge \frac{1}{4}\) and \(f\in W^{1}_{\beta }(\Sigma )\),

$$\begin{aligned} \int _{\Sigma } \left( 4 n +|{\textbf{x}}|^2\right) f^2 e^{\beta |{\textbf{x}}|^2}\, d\mathcal {H}^n \le 16 \int _{\Sigma }|\nabla _\Sigma f|^2 e^{\beta |{\textbf{x}}|^2}\, d\mathcal {H}^n. \end{aligned}$$
(A.1)

Likewise

$$\begin{aligned} (4\beta -1) \int _{\Sigma }|{\textbf{x}}^\top |^2 f^2 e^{\beta |{\textbf{x}}|^2} \, d\mathcal {H}^n \le 4 \int _{\Sigma }|\nabla _\Sigma f|^2 e^{\beta |{\textbf{x}}|^2}\, d\mathcal {H}^n. \end{aligned}$$
(A.2)

Proof

First observe that as \(\Sigma \) is a self-expander one has that

$$\begin{aligned} {\mathscr {L}}_{\Sigma }^0 \left( |{\textbf{x}}|^2+2n\right) =|{\textbf{x}}|^2+2n. \end{aligned}$$

Now suppose that f has compact support. Integrating by parts gives

$$\begin{aligned}&\int _\Sigma \left( 2 n +|{\textbf{x}}|^2\right) f^2 e^{\beta |{\textbf{x}}|^2} \, d\mathcal {H}^n = \int _\Sigma \left( {\mathscr {L}}_\Sigma ^0 \left( 2 n +|{\textbf{x}}|^2\right) \right) f^2 e^{\beta |{\textbf{x}}|^2}\, d\mathcal {H}^n \\&= - \int _\Sigma \nabla _\Sigma \left( 2 n +|{\textbf{x}}|^2\right) \cdot \nabla _\Sigma \left( e^{\left( \beta -\frac{1}{4}\right) |{\textbf{x}}|^2} f^2 \right) e^{\frac{|{\textbf{x}}|^2}{4}}\, d\mathcal {H}^n \\&=-\int _{\Sigma } \left( (4\beta -1) |{\textbf{x}}^\top |^2 f^2 + 4 \phi {\textbf{x}}^\top \cdot \nabla _\Sigma f \right) e^{\beta |{\textbf{x}}|^2} \, d\mathcal {H}^n \\&= - (4\beta -1) \int _{\Sigma } |{\textbf{x}}^\top |^2 f^2 e^{\beta |{\textbf{x}}|^2} \, d\mathcal {H}^n -4 \int _{\Sigma } f {\textbf{x}}^\top \cdot \nabla _\Sigma f \, e^{\beta |{\textbf{x}}|^2}\, d\mathcal {H}^n. \end{aligned}$$

The absorbing inequality and the hypothesis that \(\beta \ge \frac{1}{4}\) give

$$\begin{aligned} \int _\Sigma \left( 2 n +|{\textbf{x}}|^2\right) f^2 e^{\beta |{\textbf{x}}|^2}\, d\mathcal {H}^n \le \int _{\Sigma }\left( \frac{1}{2} |{\textbf{x}}^\top |^2 f^2 + 8| \nabla _\Sigma f|^2 \right) e^{\beta |{\textbf{x}}|^2}\, d\mathcal {H}^n. \end{aligned}$$

Rearranging this gives the first inequality. The second inequality follows from the same computation but using a different version of the absorbing inequality.

To see that these estimates hold for all \(f\in W^{1}_{\beta }(\Sigma )\) one uses the compactly supported cutoff \(\psi _R\in C^\infty ({\mathbb {R}}^{n+1})\) with the property that \(0\le \psi _R\le 1\), \(\psi _R=1\) in \(B_R\), \({\textrm{spt}}\,\psi _R\subset B_{2R}\) and \(|\nabla \psi _R|\le 2\). The estimates hold for \(f_R=\psi _R f\) and hence, by the dominated convergence theorem, hold also for f. \(\square \)

Proposition A.2

Let \(\Sigma \in \mathcal {ACH}_{n}^{k,\alpha }\) be a self-expander. Suppose \(R_0\ge 1\) is such that on \(\bar{E}_{R_0}\) the estimates (2.5) hold with constant \(C_0\). There is an \(R_1=R_1(C)\ge R_0\) so that: For \(\beta \ge \frac{1}{4}\), \(f \in W^{1}_{\beta }(\Sigma )\) and \(R>R_1\) one has the estimate

$$\begin{aligned} R e^{\beta R^2} \int _{S_R} f^2\, d\mathcal {H}^{n-1} \le 2 \int _{\bar{E}_R} |\nabla _\Sigma f|^2 e^{\beta |{\textbf{x}}|^2} \, d\mathcal {H}^n. \end{aligned}$$

Proof

Suppose first that f has compact support. Let

$$\begin{aligned} {\textbf{Z}}= \frac{|{\textbf{x}}| {\textbf{x}}^\top }{|{\textbf{x}}^\top |}=\frac{\frac{1}{2}\nabla _\Sigma |{\textbf{x}}|^2}{|\nabla _\Sigma |{\textbf{x}}||}. \end{aligned}$$

By (2.5), \(|\nabla _\Sigma |{\textbf{x}}||\ge \frac{1}{2}\) so this vector field is well-defined. Using (2.5), one sees that, by taking \(R_1\) sufficiently large, on \(\bar{E}_{R_1}\), one has

$$\begin{aligned} |{\textbf{x}}^\top | \ge |{\textbf{x}}|-\frac{C}{|{\textbf{x}}|^3}\ge |{\textbf{x}}| -\frac{1}{|{\textbf{x}}|} \text{ and } \textrm{div}_\Sigma {\textbf{Z}} \ge n-\frac{1}{2} \ge \frac{1}{2}. \end{aligned}$$

Hence, on \(\bar{E}_R\),

$$\begin{aligned} \textrm{div}_\Sigma \left( f^2 e^{\beta |{\textbf{x}}|^2} {\textbf{Z}} \right)&= \left( f^2 \textrm{div}_\Sigma {\textbf{Z}}+ 2 f \nabla _\Sigma f \cdot {\textbf{Z}} + 2\beta f^2{\textbf{x}}^\top \cdot {\textbf{Z}}\right) e^{\beta |{\textbf{x}}|^2} \\&\ge \left( \frac{1}{2} f^2+ 2 f \nabla _\Sigma f \cdot {\textbf{Z}} + \frac{1}{2} f^2 |{\textbf{Z}}|\left( |{\textbf{x}}|-|{\textbf{x}}|^{-1}\right) \right) e^{\beta |{\textbf{x}}|^2} \\&\ge \left( \frac{1}{2} f^2-2 |\nabla _\Sigma f |^2 - \frac{1}{2} f^2 |{\textbf{Z}}|^2 + \frac{1}{2} f^2 |{\textbf{Z}}| \left( |{\textbf{x}}|-|{\textbf{x}}|^{-1}\right) \right) e^{\beta |{\textbf{x}}|^2} \end{aligned}$$

where the last estimate uses the absorbing inequality. As \(|{\textbf{Z}}|=|{\textbf{x}}|\) one has

$$\begin{aligned} \textrm{div}_\Sigma \left( f^2 e^{\beta |{\textbf{x}}|^2} {\textbf{Z}} \right) \ge -2 | \nabla _\Sigma f |^2 e^{\beta |{\textbf{x}}|^2}. \end{aligned}$$

Integrating over \(\bar{E}_R\) and appealing to the divergence theorem give

$$\begin{aligned} R e^{\beta R^2} \int _{S_R} f^2 \, d\mathcal {H}^{n-1}&= -\int _{S_R} f^2 {\textbf{Z}}\cdot \frac{-{\textbf{x}}^\top }{|{\textbf{x}}^\top |} e^{\beta |{\textbf{x}}|^2} \, d\mathcal {H}^{n-1}\\&=\int _{\bar{E}_R} -\textrm{div}_\Sigma \left( f^2 e^{\beta |{\textbf{x}}|^2} {\textbf{Z}} \right) \, d\mathcal {H}^n \le 2 \int _{\bar{E}_R} |\nabla _\Sigma f |^2 e^{\beta |{\textbf{x}}|^2} \, d\mathcal {H}^n, \end{aligned}$$

which proves the claim for f of compact support. For general \(f\in W^{1}_\beta (\Sigma )\) one uses cutoffs and the dominated convergence theorem. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernstein, J., Wang, L. An integer degree for asymptotically conical self-expanders. Calc. Var. 62, 200 (2023). https://doi.org/10.1007/s00526-023-02541-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-023-02541-3

Mathematics Subject Classification

Navigation