Skip to main content
Log in

The space of asymptotically conical self-expanders of mean curvature flow

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We show that the space of asymptotically conical self-expanders of the mean curvature flow is a smooth Banach manifold. An immediate consequence is that non-degenerate self-expanders—that is, those self-expanders that admit no non-trivial normal Jacobi fields that fix the asymptotic cone—are generic in a certain sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexakis, S., Mazzeo, R.: Renormalized area and properly embedded minimal surfaces in hyperbolic 3-manifolds. Commun. Math. Phys. 297(3), 621–651 (2010)

    Article  MathSciNet  Google Scholar 

  2. Angenent, S., Ilmanen, T., Chopp, D.L.: A computed example of nonuniqueness of mean curvature flow in \(\mathbb{R}^3\). Commun. Partial Differ. Equ. 20(11–12), 1937–1958 (1995)

    Article  Google Scholar 

  3. Bernstein, J.: Asymptotic structure of almost eigenfunctions of drift Laplacians on conical ends. arXiv:1708.07085 (Preprint)

  4. Bernstein, J., Wang, L.: Smooth compactness for spaces of asymptotically conical self-expanders of mean curvature flow. arXiv:1804.09076 (Preprint)

  5. Bernstein, J., Wang, L.: An integer degree for asymptotically conical self-expanders. arXiv:1807.06494 (Preprint)

  6. Böhme, R., Tromba, A.J.: The index theorem for classical minimal surfaces. Ann. Math. (2) 113(3), 447–499 (1981)

    Article  MathSciNet  Google Scholar 

  7. Colding, T.H., Minicozzi II, W.P.: Generic mean curvature flow I; generic singularities. Ann. Math. (2) 175(2), 755–833 (2012)

    Article  MathSciNet  Google Scholar 

  8. Clutterbuck, J., Schnürer, O.C.: Stability of mean convex cones under mean curvature flow. Math. Z. 267(3–4), 535–547 (2011)

    Article  MathSciNet  Google Scholar 

  9. Ding, Q.: Minimal cones and self-expanding solutions for mean curvature flows. arXiv:1503.02612 (Preprint)

  10. Deruelle, A.: Smoothing out positively curved metric cones by Ricci expanders. Geom. Funct. Anal. 26(1), 188–249 (2016)

    Article  MathSciNet  Google Scholar 

  11. Ecker, K.: Regularity Theory for Mean Curvature Flow, Progress in Nonlinear Differential Equations and Their Applications, vol. 57. Birkhäuser Boston Inc., Boston (2004)

    Google Scholar 

  12. Ecker, K., Huisken, G.: Interior estimates for hypersurfaces moving by mean curvature. Invent. Math. 105(3), 547–569 (1991)

    Article  MathSciNet  Google Scholar 

  13. Ferrer, L., Martin, F., Mazzeo, R., Rodriguez, M.: Properly embedded minimal annuli in \(\mathbb{H}^2\times \mathbb{R}\). arXiv:1704.07788 (Preprint)

  14. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 Edition, Classics in Mathematics. Springer, Berlin (2001)

    MATH  Google Scholar 

  15. Huisken, G.: Asymptotic behaviour for singularities of the mean curvature flow. J. Differ. Geom. 31(1), 285–299 (1990)

    Article  Google Scholar 

  16. Ilmanen, T.: Lectures on mean curvature flow and related equations. https://people.math.ethz.ch/~ilmanen/papers/notes.ps (Preprint)

  17. Ladyzenskaja, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and Quasi-Linear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence (1968)

    Book  Google Scholar 

  18. Lunardi, A.: Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in \(\mathbb{R}^n\). Stud. Math. 2(128), 171–198 (1998)

    Article  Google Scholar 

  19. Maximo, D., Nunes, I., Smith, G.: Free boundary minimal annuli in convex three-manifolds. J. Differ. Geom. 106(1), 139–186 (2017)

    Article  MathSciNet  Google Scholar 

  20. Mazzeo, R., Saez, M.: Self-similar expanding solutions for the planar network flow. In: Analytic Aspects of Problems in Riemannian Geometry: Elliptic PDEs, Solitons and Computer Imaging, Sémin. Congr., 22, Soc. Math. France, Paris, pp. 159–173 (2011)

  21. Schnürer, O.C., Schulze, F.: Self-similarly expanding networks to curve shortening flow. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6(4), 511–528 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Simon, L.: Lectures on geometric measure theory. In: Proceedings of the Centre for Mathematical Analysis, Australian National University No. 3, Canberra (1983)

  23. Smale, S.: An infinite dimensional version of Sard’s theorem. Am. J. Math. 87, 861–866 (1965)

    Article  MathSciNet  Google Scholar 

  24. Tomi, F., Tromba, A.J.: Extreme curves bound embedded minimal surfaces of the type of the disc. Math. Z. 158(2), 137–145 (1978)

    Article  MathSciNet  Google Scholar 

  25. White, B.: The space of \(m\)-dimensional surfaces that are stationary for a parametric elliptic functional. Indiana Univ. Math. J. 36(3), 567–602 (1987)

    Article  MathSciNet  Google Scholar 

  26. White, B.: New applications of mapping degrees to minimal surface theory. J. Differ. Geom. 29(1), 143–162 (1989)

    Article  MathSciNet  Google Scholar 

  27. White, B.: The space of minimal submanifolds for varying Riemannian metrics. Indiana Univ. Math. J. 40(1), 161–200 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Lu Wang would like to thank David Hoffman, Bing Wang and Brian White for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Bernstein.

Additional information

Communicated by F.C. Marques.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jacob Bernstein was partially supported by the NSF Grant DMS-1609340. Lu Wang was partially supported by the NSF Grants DMS-1811144 and DMS-1834824, an Alfred P. Sloan Research Fellowship, the office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin-Madison with funding from the Wisconsin Alumni Research Foundation and a Vilas Early Investigator Award.

Appendices

Appendix A: Estimates for the heat equation on \(\mathbb {R}^n\)

We first state a well-known maximum principle for parabolic equations on \(\mathbb {R}^n\).

Proposition A.1

If \(w\in C^0(\mathbb {R}^n\times [0,T])\) has continuous spatial derivatives up to the second order and continuous time derivative and satisfies

$$\begin{aligned} \left\{ \begin{array}{cc} \partial _t w-\sum \limits _{i,j=1}^n a^{ij}\partial _{x_ix_j}^2 w-\sum \limits _{i=1}^n b^i\partial _{x_i}w-cw\le 0 &{} \text{ in } \mathbb {R}^n\times (0,T)\\ w(x,0)\le 0 &{} \text{ for } x\in \mathbb {R}^n \end{array} \right. \end{aligned}$$

where for some \(\lambda >0\),

$$\begin{aligned} \sum _{i,j=1}^n a^{ij}(x,t)\xi _i\xi _j \ge 0 \text{ and } \sum _{i,j=1}^n |a^{ij}(x,t)|+\sum _{i=1}^n |b^i(x,t)|+|c(x,t)| \le \lambda , \end{aligned}$$

then \(w\le 0\) on \(\mathbb {R}^n\times [0,T]\).

Proof

For each \(l>0\) we define

$$\begin{aligned} w_l(x,t)=e^{-2\lambda t} w(x,t)-l(1+|x|^2)^{\frac{1}{2}}. \end{aligned}$$

Then, by direct computations,

$$\begin{aligned} \partial _t w_l-\sum _{i,j=1}^n a^{ij}\partial _{x_ix_j}^2 w_l-\sum _{i=1}^n b^i \partial _{x_i} w_l+(2\lambda -c) w_l \le C(n,\lambda ) l. \end{aligned}$$

Clearly, \(w_l(x,0)\le 0\), and as \(w\in C^0(\mathbb {R}^n\times [0,T])\), \(w_l(x,t)\rightarrow -\infty \) when (xt) approaches infinity.

Thus, there is a point \((x_l,t_l)\in \mathbb {R}^n\times [0,T]\) such that

$$\begin{aligned} \sup _{(x,t)\in \mathbb {R}^n\times [0,T]} w_l(x,t)=w_l(x_l,t_l). \end{aligned}$$

If \(t_l>0\), then

$$\begin{aligned} \partial _t w_l(x_l,t_l)\ge 0, \, \partial _{x_i} w_l(x_l,t_l)=0, \text{ and } \sum _{i,j=1}^n a^{ij}(x_l,t_l)\partial _{x_ix_j}^2 w_l(x_l,t_l)\le 0. \end{aligned}$$

As \(|c|\le \lambda \), it follows that \(w_l(x_l,t_l)\le C l \lambda ^{-1}\). If \(t_l=0\), then \(w_l(x_l,t_l)\le 0\). Hence,

$$\begin{aligned} \sup _{(x,t)\in \mathbb {R}^n\times [0,T]} w_l(x,t)\le C l \lambda ^{-1}. \end{aligned}$$

Now passing \(l\rightarrow 0\), we get

$$\begin{aligned} \sup _{(x,t)\in \mathbb {R}^n\times [0,T]} w(x,t)\le 0, \end{aligned}$$

proving the claim. \(\square \)

We now prove Lemma 5.5 for the heat equation on \(\mathbb {R}^n\).

Proposition A.2

Let \(\beta \in (0,1)\). Given \(h\in C^0((0,1); C^\beta (\mathbb {R}^n))\) the Cauchy problem

$$\begin{aligned} \left\{ \begin{array}{cc} \partial _t w-\Delta w=h &{} \text{ in } \mathbb {R}^n\times (0,1)\\ \displaystyle \lim _{(x^\prime ,t)\rightarrow (x,0)} w(x^\prime ,t)=0 &{} \text{ for } x\in \mathbb {R}^n \end{array} \right. \end{aligned}$$
(A.1)

has a unique solution in \(C^0((0,1); C^{2,\beta }(\mathbb {R}^n))\). Moreover, w satisifes

$$\begin{aligned} \sup _{0<t<1} \sum _{i=0}^2 t^{\frac{i-2}{2}} \Vert \nabla ^i w(\cdot ,t)\Vert _{\beta } \le \nu (n,\beta ) \sup _{0<t<1} \Vert h(\cdot ,t)\Vert _\beta . \end{aligned}$$

Proof

On \(\mathbb {R}^n\times (0,1)\) we define

$$\begin{aligned} w(x,t)=\int _0^t \int _{\mathbb {R}^n} h(y,s) \Phi (x-y,t-s) \, dyds, \end{aligned}$$

where \(\Phi (x-y,t-s)=(4\pi (t-s))^{-\frac{n}{2}} e^{-\frac{|x-y|^2}{4(t-s)}}\). It follows from a direct calculation—cf. [17, pp. 263–264]—that \(\partial _t w-\Delta w=h\).

Observe that \(|w(x,t)|\le t\Vert h\Vert _0\), and that

$$\begin{aligned} |w(x,t)-w(x^\prime ,t)|&\le \int _0^t \int _{\mathbb {R}^n} |h(x-y,s)-h(x^\prime -y,s)| \Phi (y,t-s) \, dyds \\&\le t \sup _{0<s<1} [h(\cdot ,s)]_\beta |x-x^\prime |^\beta . \end{aligned}$$

Thus,

$$\begin{aligned} \sup _{0<t<1} t^{-1} \Vert w(\cdot ,t)\Vert _{\beta } \le \sup _{0<t<1}\Vert h(\cdot ,t)\Vert _\beta . \end{aligned}$$

Next we use [17, Chapter 4, (2.5)] to estimate

$$\begin{aligned} |\partial _{x_i} w(x,t)| \le \Vert h\Vert _0\int _0^t \int _{\mathbb {R}^n} |\partial _{x_i}\Phi (x-y,t-s)| \, dyds \le C(n) \sqrt{t} \Vert h\Vert _0. \end{aligned}$$

Moreover,

$$\begin{aligned} |\partial _{x_i} w(x,t)-\partial _{x_i} w(x^\prime ,t)|&\le \int _0^t \int _{\mathbb {R}^n} |h(x-y,s)-h(x^\prime -y,s)| |\partial _{y_i}\Phi (y,t-s)| \, dyds \\&\le C(n)\sqrt{t}\sup _{0<s<1} [h(\cdot ,s)]_\beta |x-x^\prime |^\beta . \end{aligned}$$

Thus,

$$\begin{aligned} \sup _{0<t<1} t^{-\frac{1}{2}} \Vert \partial _{x_i} w(\cdot ,t)\Vert _{\beta } \le C(n) \sup _{0<t<1} \Vert h(\cdot ,t)\Vert _{\beta }. \end{aligned}$$

Next we use [17, Chapter 4, (1.9) and (2.5)] to estimate

$$\begin{aligned} |\partial _{x_ix_j}^2 w(x,t)|&\le \int _0^t \int _{\mathbb {R}^n} |h(y,s)-h(x,s)| |\partial _{x_ix_j}^2\Phi (x-y,t-s)| \, dyds \\&\le \sup _{0<s<1} [h(\cdot ,s)]_\beta \int _0^t \int _{\mathbb {R}^n} |x-y|^\beta |\partial _{x_ix_j}^2\Phi (x-y,t-s)| \, dyds \\&\le C^{\prime }(n,\beta )\sup _{0<s<1} [h(\cdot ,s)]_\beta . \end{aligned}$$

This together with the Hölder estimate [17, pp. 276–277] of \(\partial _{x_ix_j}^2 w\) gives

$$\begin{aligned} \sup _{0<t<1} \Vert \partial _{x_ix_j}^2 w(\cdot ,t)\Vert _\beta \le C^{\prime }(n,\beta ) \sup _{0<t<1} \Vert h(\cdot ,t)\Vert _\beta . \end{aligned}$$

Hence, we have proved that w is a classical solution to the problem (A.1) satisfying

$$\begin{aligned} \sup _{0<t<1} \sum _{i=0}^2 t^{\frac{i-2}{2}} \Vert \nabla ^i w(\cdot ,t)\Vert _\beta \le C^{\prime \prime }(n,\beta ) \sup _{0<t<1} \Vert h(\cdot ,t)\Vert _\beta . \end{aligned}$$

Moreover, observe that for \((x,t)\in \mathbb {R}^n\times (0,1)\) and \(0<\delta <1-t\),

$$\begin{aligned} w(x,t+\delta )-w(x,t)&=\int _0^t \int _{\mathbb {R}^n} (h(y,s+\delta )-h(y,s))\Phi (x-y,t-s) \, dyds \\&\quad +\int _{-\delta }^0 \int _{\mathbb {R}^n} h(y,s+\delta ) \Phi (x-y,t-s) \, dyds. \end{aligned}$$

By the preceding discussions, if \(h\in C^0((0,1); C^\beta (\mathbb {R}^n))\), then \(w\in C^0((0,1); C^{2,\beta }(\mathbb {R}^n))\). The uniqueness follows from Proposition A.1. \(\square \)

Appendix B: Notation guide

Section 1.

\(\mathbf {H}_\Sigma \):

The mean curvature vector of \(\Sigma \)

\(\mathbf {n}_\Sigma \):

The unit normal of \(\Sigma \)

\(\mathbf {x}\):

The position vector

\(\mathbf {x}^\perp \):

The normal component of the position vector

\({\mathcal {H}^n}\):

The n-dimensional Hausdorff measure

\({\mathcal {ACE}^{k,\alpha }_n(\Gamma )}\):

The space of equivalence classes of \(C^{k,\alpha }_*\)-asymptotically conical embeddings of \(\Gamma \) into \(\mathbb {R}^{n+1}\) whose images are self-expanders.

Section 2.1.

\(B^n_R(x), B_R(x)\):

The open ball in \(\mathbb {R}^n\) of radius R and center x

\(\bar{B}^n_R(x), \bar{B}_R(x)\):

The closed ball in \(\mathbb {R}^n\) of radius R and center x

\(B^n_R, B_R\):

The open ball in \(\mathbb {R}^n\) of radius R and center origin

\(\bar{B}^n_R, \bar{B}_R\):

The closed ball in \(\mathbb {R}^n\) of radius R and center origin

\({\mathcal {L}{[}\mathcal {C}}{]}\):

The link of cone \(\mathcal {C}\)

\({\mathcal {C}{[}\sigma {]}}\):

The cone over \(\sigma \subset \mathbb {S}^n\)

Section 2.2.

\(\nabla _\Sigma \):

The covariant derivative on \(\Sigma \)

\(d_\Sigma \):

The geodesic distance on \(\Sigma \)

\(B_R^\Sigma (p)\):

The open geodesic ball in \(\Sigma \) of radius R and center \(p\in \Sigma \)

\(\tau ^{\Sigma }_{p,q}\):

The parallel transport along the unique minimizing geodesic in \(\Sigma \) from p to q

\(\Vert f\Vert _{l;\Omega }, \Vert f \Vert _{l}, \Vert f \Vert _{l,0}\):

The \(C^l\) norm for function f on \(\Omega \)

\(C^l(\Omega ), C^{l,0}(\Omega )\):

The space of functions on \(\Omega \) with finite \(C^{l}\) norm

\({[}f{]}_{\beta ;\Omega }, {[}f{]}_{\beta }\):

The Hölder semi-norm with exponent \(\beta \) for function f on \(\Omega \)

\({[}T{]}_{\beta ;\Omega }, {[}T{]}_{\beta }\):

The Hölder semi-norm with exponent \(\beta \) for tensor field T on \(\Omega \)

\(\Vert f\Vert _{l,\beta ;\Omega }, \Vert f\Vert _{l,\beta }\):

The \(C^{l,\beta }\) norm for function f on \(\Omega \)

\(\Vert f\Vert _{\beta ;\Omega },\Vert f\Vert _{\beta }=\Vert f\Vert _{0,\beta }\):

The \(C^\beta \) norm for function f on \(\Omega \)

\(C^{l,\beta }(\Omega )\):

The space of functions on \(\Omega \) with finite \(C^{l,\beta }\) norm

\(C^\beta (\Omega )=C^{0,\beta }(\Omega )\):

The space of functions on \(\Omega \) with finite \(C^\beta \) norm

\(\Vert f\Vert _{l;\Omega }^{(d)}, \Vert f \Vert _{l}^{(d)}, \Vert f\Vert _{l,0}^{(d)}\):

The \((1+|\mathbf {x}|)^d\)-weighted \(C^l\) norm for function f on \(\Omega \)

\(C^{l}_d(\Omega ), C^{l,0}_d(\Omega )\):

The space of functions on \(\Omega \) with finite \(\Vert \cdot \Vert ^{(d)}_l\) norm

\({[}f{]}_{\beta ;\Omega }^{(d)}, {[}f{]}_{\beta }^{(d)}\):

The \((1+|\mathbf {x}|)^d\)-weighted Hölder semi-norm with exponent \(\beta \) for function f on \(\Omega \)

\({[}T{]}_{\beta ;\Omega }^{(d)}, {[}T{]}_{\beta }^{(d)}\):

The \((1+|\mathbf {x}|)^d\)-weighted Hölder semi-norm with exponent \(\beta \) for tensor field T on \(\Omega \)

\(\Vert f\Vert _{l,\beta ;\Omega }^{(d)}, \Vert f\Vert _{l,\beta }^{(d)}\):

The \((1+|\mathbf {x}|)^d\)-weighted \(C^{l,\beta }\) norm for function f on \(\Omega \)

\(\Vert f\Vert _{\beta ;\Omega }^{(d)},\Vert f\Vert _{\beta }^{(d)}=\Vert f\Vert _{0,\beta }^{(d)}\):

The \((1+|\mathbf {x}|)^d\)-weighted \(C^{\beta }\) norm for function f on \(\Omega \)

\(C^{l,\beta }_d(\Omega )\):

The space of functions on \(\Omega \) with finite \(\Vert \cdot \Vert _{l,\beta }^{(d)}\) norm

\(C^{\beta }_d(\Omega )=C^{0,\beta }_{d}(\Omega )\):

The space of functions on \(\Omega \) with finite \(\Vert \cdot \Vert _{\beta }^{(d)}\) norm

\(X(\Omega ;\mathbb {R}^M)\):

The space of maps from \(\Omega \) to \(\mathbb {R}^M\) with finite X norm

Section 2.3.

\({\mathcal {C}_R}\):

The cone \(\mathcal {C}\) outside the closed ball \(\bar{B}_R\)

\({\mathscr {E}_d^{\mathrm {H}}[\varphi ]}\):

The homogeneous extension of degree d of \(\varphi \) where \(\varphi \) is a map from the link of a cone to \(\mathbb {R}^M\)

\(\mathrm {tr}{[}\mathbf {f}{]}\):

The trace of \(\mathbf {f}\) where \(\mathbf {f}\) is a homogeneous map from a cone to \(\mathbb {R}^M\)

\(\mathrm {tr}_\infty ^d{[}\mathbf {g}{]}\):

The trace at infinity of \(\mathbf {g}\) where \(\mathbf {g}\) is an asymptotically homogeneous of degree d map from a cone to \(\mathbb {R}^M\)

\(C^{l,\beta }_{d,\mathrm {H}}(\mathcal {C}_R;\mathbb {R}^M)\):

The subspace of \(C^{l,\beta }_d(\mathcal {C}_R;\mathbb {R}^M)\) consisting of elements that are asymptotically homogeneous

\(C^{l,\beta }_{d,0}(\mathcal {C}_R;\mathbb {R}^M)\):

The subspace of \(C^{l,\beta }_{d,\mathrm {H}}(\mathcal {C}_R;\mathbb {R}^M)\) consisting of elements with trace at infinity equal to zero

Section 2.4.

\(\Sigma _{f}\):

The \(\mathbf {v}\)-graph of function f

\(\pi _{\mathbf {v}}\):

The projection map onto a hypersurfaces along transverse section \(\mathbf {v}\) on the hypersurface

\({\mathscr {E}_{\mathbf {v}}{[}\mathbf {f}{]}}\):

The \(\mathbf {v}\)-extension of \(\mathbf {f}\) where \(\mathbf {f}\) is a map from a hypersurface to \(\mathbb {R}^M\) and \(\mathbf {v}\) is a transverse section on the hypersurface

Section 2.5.

\({\mathscr {E}^{\mathrm {H}}_{\mathbf {v},d}{[}\varphi {]}}\):

The \(\mathbf {v}\)-homogeneous extension of degree d of \(\varphi \) where \(\varphi \) is a map from the link of a cone to \(\mathbb {R}^M\) and \(\mathbf {v}\) is a tranverse section on the cone

Section 3.

\({\mathcal {C}(\Sigma )}\):

The asymptotic cone of \(\Sigma \)

\({\mathcal {L}(\Sigma )}\):

The link of the asymptotic cone of \(\Sigma \)

\({\mathcal {C}_R(\Sigma )}\):

The asymptotic cone \(C(\Sigma )\) outside the closed ball \(\bar{B}_R\)

\({\mathcal {ACH}^{k,\alpha }_n}\):

The space of \(C^{k,\alpha }_*\)-asymptotically conical \(C^{k,\alpha }\)-hypersurfaces in \(\mathbb {R}^{n+1}\)

\(\theta _{\mathbf {v};\Sigma ^\prime }\):

The inverse of \(\pi _{\mathbf {v}}\) restricted to \(\Sigma ^\prime \), a hypersurface outside a compact set

Section 3.1.

\(\mathrm {tr}_\infty ^d{[}\mathbf {f}{]}\):

The trace at infinity of \(\mathbf {f}\) when \(\mathbf {f}\) is an asymptotically conical of degree d map from an asymptotically conical hypersurface into \(\mathbb {R}^M\)

\(C^{l,\beta }_{d,\mathrm {H}}(\Sigma ;\mathbb {R}^M)\):

The subspace of \(C^{l,\beta }_d(\Sigma ;\mathbb {R}^M)\) consisting of elements that are asymptotically homogeneous

\(C^{l,\beta }_{d,0}(\Sigma ;\mathbb {R}^M)\):

The subspace of \(C^{l,\beta }_{d,\mathrm {H}}(\Sigma ;\mathbb {R}^M)\) consisting of elements with trace at infinity equal to zero

Section 3.2.

\({\mathcal {ACH}^{k,\alpha }_n(\Gamma )}\):

The space of \(C^{k,\alpha }_*\)-asymptotically conical embeddings of \(\Gamma \) into \(\mathbb {R}^{n+1}\)

\({\mathcal {C}{[}\mathbf {f}}{]}\):

The homogeneous extension of degree one of \(\mathrm {tr}_\infty ^1[\mathbf {f}]\)

\(\mathbf {f}\sim \mathbf {g}\):

The asymptotically conical embeddings \(\mathbf {f},\mathbf {g}\) are equivalent, provided \(\mathbf {f}^{-1}\circ \mathbf {g}\) is a diffeomorphism that fixes infinity

Section 4.

\(L_{\Sigma }\):

The Jacobi operator on \(\Sigma \)

\(L_{\mathbf {v}}\):

The \(\mathbf {v}\)-Jacobi operator where \(\mathbf {v}\) is a transverse section

Section 5.

\({\mathscr {L}_\Sigma }\):

Certain Schrödinger operator on \(\Sigma \) related to the Jacobi operator

\({\mathcal {D}^{l,\beta }(\Sigma )}\):

Certain Banach space of functions on \(\Sigma \)

\(\Vert f\Vert _{l,\beta }^*\):

The norm on \(\mathcal {D}^{l,\beta }(\Sigma )\)

Section 6.

\({\mathcal {K}}\):

The kernel space of the Jacobi operator

\({\mathcal {K}_{\mathbf {v}}}\):

The kernel space of the \(\mathbf {v}\)-Jacobi operator

r:

The distance to the origin restricted to a hypersurface

\(\partial _r\):

The gradient of r

\(\mathrm {tr}_\infty ^*{[}u{]}\):

The trace at infinity of Jacobi function u

\({\mathscr {F}_{\mathbf {w}}{[}u{]}}\):

The leading term in the expansion of Jacobi function u

Section 7.

\(\mathbf {H}{[}\mathbf {g}{]}\):

The mean curvature vector of embedding \(\mathbf {g}\)

\(\mathbf {n}{[}\mathbf {g}{]}\):

The unit normal of embedding \(\mathbf {g}\)

\(\mathbf {x}^\perp {[}\mathbf {g}{]}\):

The normal component of embedding \(\mathbf {g}\)

\({\mathcal {B}_R(p;X)}\):

The open ball in Banach space X with radius R and center \(p\in X\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernstein, J., Wang, L. The space of asymptotically conical self-expanders of mean curvature flow. Math. Ann. 380, 175–230 (2021). https://doi.org/10.1007/s00208-021-02147-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02147-0

Navigation