Skip to main content

Advertisement

Log in

Brezis–Van Schaftingen–Yung formulae in ball Banach function spaces with applications to fractional Sobolev and Gagliardo–Nirenberg inequalities

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let X be a ball Banach function space on \({\mathbb R}^n\). In this article, under some mild assumptions about both X and the boundedness of the Hardy–Littlewood maximal operator on the associate space of the convexification of X, the authors prove that, for any locally integrable function f with \(\Vert \,|\nabla f|\,\Vert _{X}<\infty \),

$$\begin{aligned} \sup _{\lambda \in (0,\infty )}\lambda \left\| \left| \left\{ y\in {{\mathbb {R}}}^n:\ |f(\cdot )-f(y)| >\lambda |\cdot -y|^{\frac{n}{q}+1}\right\} \right| ^{\frac{1}{q}} \right\| _X\sim \Vert \,|\nabla f|\,\Vert _X \end{aligned}$$

with the positive equivalence constants independent of f, where the index \(q\in (0,\infty )\) is related to X and \(|\{y\in {\mathbb R}^n:\ |f(\cdot )-f(y)| >\lambda |\cdot -y|^{\frac{n}{q}+1}\}|\) is the Lebesgue measure of the set under consideration. In particular, when \(X:=L^p({\mathbb R}^n)\) with \(p\in [1,\infty )\), the above formulae hold true for any given \(q\in (0,\infty )\) with \(n(\frac{1}{p}-\frac{1}{q})<1\), which when \(q=p\) are exactly the recent surprising formulae of H. Brezis, J. Van Schaftingen, and P.-L. Yung, and which in other cases are new. This generalization has a wide range of applications and, particularly, enables the authors to establish new fractional Sobolev and new Gagliardo–Nirenberg inequalities in various function spaces, including Morrey spaces, mixed-norm Lebesgue spaces, variable Lebesgue spaces, weighted Lebesgue spaces, Orlicz spaces, Orlicz-slice (generalized amalgam) spaces, and weak Morrey spaces, and, even in all these special cases, the obtained results are new. The proofs of these results strongly depend on the Poincaré inequality, the extrapolation, the exact operator norm on \(X'\) of the Hardy–Littlewood maximal operator, and the exquisite geometry of \({\mathbb {R}}^n.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability

Data sharing is not applicable to this article as no data sets were generated or analysed.

References

  1. Adams, D.R.: Morrey Spaces. Lecture Notes in Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Cham (2015)

    Google Scholar 

  2. Andersen, K.F., John, R.T.: Weighted inequalities for vector-valued maximal functions and singular integrals. Studia Math. 69, 19–31 (1980/81)

  3. Auscher, P., Mourgoglou, M.: Representation and uniqueness for boundary value elliptic problems via first order systems. Rev. Mat. Iberoam. 35, 241–315 (2019)

    MATH  Google Scholar 

  4. Auscher, P., Prisuelos-Arribas, C.: Tent space boundedness via extrapolation. Math. Z. 286, 1575–1604 (2017)

    MATH  Google Scholar 

  5. Benedek, A., Panzone, R.: The space \(L^p\), with mixed norm. Duke Math. J. 28, 301–324 (1961)

    MATH  Google Scholar 

  6. Bennett, C., Sharpley, R.: Interpolation of Operators. Pure and Applied Mathematics, vol. 129. Academic Press Inc, Boston, MA (1988)

    MATH  Google Scholar 

  7. Bojarski, B.: Remarks on some geometric properties of Sobolev mappings. In: Functional Analysis & Related Topics (Sapporo, 1990), pp. 65–76. World Scientific Publishing, River Edge, NJ (1991)

  8. Bourgain, J., Brezis, H., Mironescu, P.: Lifting in Sobolev spaces. J. Anal. Math. 80, 37–86 (2000)

    MATH  Google Scholar 

  9. Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces. In: Optimal Control and Partial Differential Equations, pp. 439–455. IOS, Amsterdam (2001)

  10. Bourgain, J., Brezis, H., Mironescu, P.: Limiting embedding theorems for \(W^{s, p}\) when \(s\uparrow 1\) and applications. J. Anal. Math. 87, 77–101 (2002)

    MATH  Google Scholar 

  11. Brezis, H.: How to recognize constant functions. A connection with Sobolev spaces. Russ. Math. Surv. 57, 693–708 (2002)

    MATH  Google Scholar 

  12. Brezis, H., Mironescu, P.: Gagliardo–Nirenberg inequalities and non-inequalities: the full story. Ann. Inst. H. Poincaré C Anal. Non Linéaire 35, 1355–1376 (2018)

    MATH  Google Scholar 

  13. Brezis, H., Mironescu, P.: Where Sobolev interacts with Gagliardo–Nirenberg. J. Funct. Anal. 277, 2839–2864 (2019)

    MATH  Google Scholar 

  14. Brezis, H., Nguyen, H.-M.: The BBM formula revisited. Atti. Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27, 515–533 (2016)

    MATH  Google Scholar 

  15. Brezis, H., Seeger, A., Van Schaftingen, J., Yung, P.-L.: Families of functionals representing Sobolev norms. Anal. PDE (to appear) or arXiv: 2109.02930

  16. Brezis, H., Seeger, A., Van Schaftingen, J., Yung, P.-L.: Sobolev spaces revisited. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 33, 413–437 (2022)

    MATH  Google Scholar 

  17. Brezis, H., Van Schaftingen, J., Yung, P.-L.: A surprising formula for Sobolev norms. Proc. Natl. Acad. Sci. USA 118, e2025254118 (2021)

    Google Scholar 

  18. Brezis, H., Van Schaftingen, J., Yung, P.-L.: Going to Lorentz when fractional Sobolev, Gagliardo and Nirenberg estimates fail. Calc. Var. Partial Differ. Equ. 60, 12 (2021). (Paper No. 129)

    MATH  Google Scholar 

  19. Caffarelli, L., Roquejoffre, J.-M., Savin, O.: Non local minimal surfaces. Commun. Pure Appl. Math. 63, 1111–1144 (2010)

    MATH  Google Scholar 

  20. Caffarelli, L., Valdinoci, E.: Uniform estimates and limiting arguments for nonlocal minimal surfaces. Calc. Var. Partial Differ. Equ. 41, 203–240 (2011)

    MATH  Google Scholar 

  21. Chang, D.-C., Wang, S., Yang, D., Zhang, Y.: Littlewood–Paley characterizations of Hardy-type spaces associated with ball quasi-Banach function spaces. Complex Anal. Oper. Theory 14, 33 (2020). (Paper No. 40)

    MATH  Google Scholar 

  22. Cheung, K., Ho, K.-P.: Boundedness of Hardy–Littlewood maximal operator on block spaces with variable exponent. Czechoslov. Math. J. 64(139), 159–171 (2014)

    MATH  Google Scholar 

  23. Chiarenza, F., Frasca, M.: Morrey spaces and Hardy–Littlewood maximal function. Rend. Mat. Appl. (7) 7, 273–279 (1987)

    MATH  Google Scholar 

  24. Cleanthous, G., Georgiadis, A.G., Nielsen, M.: Anisotropic mixed-norm Hardy spaces. J. Geom. Anal. 27, 2758–2787 (2017)

    MATH  Google Scholar 

  25. Cleanthous, G., Georgiadis, A.G., Nielsen, M.: Discrete decomposition of homogeneous mixed-norm Besov spaces. In: Functional Analysis, Harmonic Analysis, and Image Processing: A Collection of Papers in Honor of Björn Jawerth. Contemporary Mathematics, vol. 693, pp. 167–184. American Mathematical Society, Providence, RI (2017)

  26. Cleanthous, G., Georgiadis, A.G., Nielsen, M.: Fourier multipliers on anisotropic mixed-norm spaces of distributions. Math. Scand. 124, 289–304 (2019)

    MATH  Google Scholar 

  27. Cruz-Uribe, D.V., Fiorenza, A.: Variable Lebesgue Spaces. Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Heidelberg (2013)

    MATH  Google Scholar 

  28. Cruz-Uribe, D.V., Martell, J.M., Pérez, C.: Weights, Extrapolation and the Theory of Rubio de Francia, Operator Theory: Advances and Applications, vol. 215. Birkhäuser/Springer Basel AG, Basel (2011)

    MATH  Google Scholar 

  29. Cruz-Uribe, D.V., Wang, L.-A.D.: Variable Hardy spaces. Indiana Univ. Math. J. 63, 447–493 (2014)

    MATH  Google Scholar 

  30. Dai, F., Grafakos, L., Pan, Z., Yang, D., Yuan, W., Zhang, Y.: The Bourgain–Brezis–Mironescu formula on ball Banach function spaces. Math. Ann. (to appear)

  31. Dai, F., Lin, X., Yang, D., Yuan, W., Zhang, Y.: Poincaré inequality meets Brezis–Van Schaftingen–Yung formula on metric measure spaces. J. Funct. Anal. 283, 52 (2022). (Paper No. 109645)

    MATH  Google Scholar 

  32. del Campo, R., Fernández, A., Mayoral, F., Naranjo, F.: Orlicz spaces associated to a quasi-Banach function space: applications to vector measures and interpolation. Collect. Math. 72, 481–499 (2021)

    MATH  Google Scholar 

  33. Diening, L., Harjulehto, P., Hästö, P., R\({\mathring{{\rm u}}}\)z̆ic̆ka, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017. Springer, Heidelberg (2011)

  34. Diening, L., Hästö, P., Roudenko, S.: Function spaces of variable smoothness and integrability. J. Funct. Anal. 256, 1731–1768 (2009)

    MATH  Google Scholar 

  35. Domínguez, O., Milman, M.: Bourgain–Brezis–Mironescu–Maz’ya–Shaposhnikova limit formulae for fractional Sobolev spaces via interpolation and extrapolation. Calc. Var. Partial Differ. Equ. (to appear)

  36. Domínguez, O., Milman, M.: New Brezis–Van Schaftingen–Yung type inequalities connected with maximal inequalities and one parameter families of operators. Adv. Math. 411, Part A (2022). (Paper No. 108774)

  37. Domínguez, O., Tikhonov, S.: Sobolev embeddings, extrapolations, and related inequalities. arXiv: 1909.12818

  38. Duoandikoetxea, J., Vega, L.: Some weighted Gagliardo–Nirenberg inequalities and applications. Proc. Am. Math. Soc. 135, 2795–2802 (2007)

    MATH  Google Scholar 

  39. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Textbooks in Mathematics, Revised edn. CRC Press, Boca Raton, FL (2015)

  40. Galmarino, A.R., Panzone, R.: \(L^p\)-spaces with mixed norm, for \(P\) a sequence. J. Math. Anal. Appl. 10, 494–518 (1965)

    MATH  Google Scholar 

  41. Georgiadis, A.G., Johnsen, J., Nielsen, M.: Wavelet transforms for homogeneous mixed-norm Triebel–Lizorkin spaces. Monatsh. Math. 183, 587–624 (2017)

    MATH  Google Scholar 

  42. Georgiadis, A.G., Nielsen, M.: Pseudodifferential operators on mixed-norm Besov and Triebel–Lizorkin spaces. Math. Nachr. 289, 2019–2036 (2016)

    MATH  Google Scholar 

  43. Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics, vol. 249, 3rd edn. Springer, New York (2014)

    Google Scholar 

  44. Gu, Q., Yung, P.-L.: A new formula for the \(L^p\) norm. J. Funct. Anal. 281, 19 (2021). (Paper No. 109075)

    MATH  Google Scholar 

  45. Hajłasz, P., Kałamajska, A.: Polynomial asymptotics and approximation of Sobolev functions. Studia Math. 113, 55–64 (1995)

    MATH  Google Scholar 

  46. Haroske, D.D.: Sobolev spaces with Muckenhoupt weights, singularities and inequalities. Georgian Math. J. 15, 263–280 (2008)

    MATH  Google Scholar 

  47. Haroske, D.D., Moura, S.D., Skrzypczak, L.: Unboundedness properties of smoothness Morrey spaces of regular distributions on domains. Sci. China Math. 60, 2349–2376 (2017)

    MATH  Google Scholar 

  48. Haroske, D.D., Moura, S.D., Skrzypczak, L.: Some embeddings of Morrey spaces with critical smoothness. J. Fourier Anal. Appl. 26, 31 (2020). (Paper No. 50)

    MATH  Google Scholar 

  49. Haroske, D.D., Schneider, C., Skrzypczak, L.: Morrey spaces on domains: different approaches and growth envelopes. J. Geom. Anal. 28, 817–841 (2018)

    MATH  Google Scholar 

  50. Haroske, D.D., Skrzypczak, L.: Embeddings of weighted Morrey spaces. Math. Nachr. 290, 1066–1086 (2017)

    MATH  Google Scholar 

  51. Haroske, D.D., Triebel, H.: Distributions, Sobolev Spaces, Elliptic Equations. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich (2008)

    MATH  Google Scholar 

  52. Ho, K.-P.: Atomic decomposition of Hardy–Morrey spaces with variable exponents. Ann. Acad. Sci. Fenn. Math. 40, 31–62 (2015)

    MATH  Google Scholar 

  53. Ho, K.-P.: Dilation operators and integral operators on amalgam space \((L_p, l_q)\). Ric. Mat. 68, 661–677 (2019)

    MATH  Google Scholar 

  54. Ho, K.-P.: Erdélyi–Kober fractional integral operators on ball Banach function spaces. Rend. Semin. Mat. Univ. Padova 145, 93–106 (2021)

    MATH  Google Scholar 

  55. Holland, F.: Harmonic analysis on amalgams of \(L^p\) and \(l^q\). J. Lond. Math. Soc. (2) 10, 295–305 (1975)

    MATH  Google Scholar 

  56. Hörmander, L.: Estimates for translation invariant operators in \(L^p\) spaces. Acta Math. 104, 93–140 (1960)

    MATH  Google Scholar 

  57. Hovemann, M.: Triebel–Lizorkin–Morrey spaces and differences. Math. Nachr. 295, 725–761 (2022)

    Google Scholar 

  58. Huang, L., Chang, D.-C., Yang, D.: Fourier transform of Hardy spaces associated with ball quasi-Banach function spaces. Appl. Anal. 101, 3825–3840 (2022)

    MATH  Google Scholar 

  59. Huang, L., Liu, J., Yang, D., Yuan, W.: Atomic and Littlewood-Paley characterizations of anisotropic mixed-norm Hardy spaces and their applications. J. Geom. Anal. 29, 1991–2067 (2019)

    MATH  Google Scholar 

  60. Huang, L., Liu, J., Yang, D., Yuan, W.: Dual spaces of anisotropic mixed-norm Hardy spaces. Proc. Am. Math. Soc. 147, 1201–1215 (2019)

    MATH  Google Scholar 

  61. Huang, L., Yang, D.: On function spaces with mixed norms—a survey. J. Math. Study 54, 262–336 (2021)

    MATH  Google Scholar 

  62. Izuki, M., Noi, T., Sawano, Y.: The John–Nirenberg inequality in ball Banach function spaces and application to characterization of BMO. J. Inequal. Appl. 2019, 11 (2019). (Paper No. 268)

    MATH  Google Scholar 

  63. Jia, H., Wang, H.: Decomposition of Hardy–Morrey spaces. J. Math. Anal. Appl. 354, 99–110 (2009)

    MATH  Google Scholar 

  64. Kałamajska, A., Pietruska-Pałuba, K.: Gagliardo–Nirenberg inequalities in weighted Orlicz spaces. Studia Math. 173, 49–71 (2006)

    MATH  Google Scholar 

  65. Kałamajska, A., Pietruska-Pałuba, K.: Interpolation inequalities for derivatives in Orlicz spaces. Indiana Univ. Math. J. 55, 1767–1789 (2006)

    MATH  Google Scholar 

  66. Kikuchi, N., Nakai, E., Tomita, N., Yabuta, K., Yoneda, T.: Calderón–Zygmund operators on amalgam spaces and in the discrete case. J. Math. Anal. Appl. 335, 198–212 (2007)

    MATH  Google Scholar 

  67. Kokilashvili, V., Krbec, M.: Weighted Inequalities in Lorentz and Orlicz Spaces. World Scientific Publishing Co., Inc., River Edge, NJ (1991)

    MATH  Google Scholar 

  68. Kopaliani, T., Chelidze, G.: Gagliardo–Nirenberg type inequality for variable exponent Lebesgue spaces. J. Math. Anal. Appl. 356, 232–236 (2009)

    MATH  Google Scholar 

  69. Kopotun, K.A.: Polynomial approximation with doubling weights having finitely many zeros and singularities. J. Approx. Theory 198, 24–62 (2015)

    MATH  Google Scholar 

  70. Kováčik, O., Rákosník, J.: On spaces \(L^{p(x)}\) and \(W^{k, p(x)}\). Czechoslov. Math. J. 41(116), 592–618 (1991)

    MATH  Google Scholar 

  71. Lacey, M., Sawyer, E.T., Uriarte-Tuero, I.: A characterization of two weight norm inequalities for maximal singular integrals with one doubling measure. Anal. PDE 5, 1–60 (2012)

    MATH  Google Scholar 

  72. Mastroianni, G., Totik, V.: Best approximation and moduli of smoothness for doubling weights. J. Approx. Theory 110, 180–199 (2001)

    MATH  Google Scholar 

  73. Maz’ya, V.: Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Second, Revised and Augmented Edition, Grundlehren der Mathematischen Wissenschaften 342. Springer, Heidelberg (2011)

    Google Scholar 

  74. Mingione, G.: Gradient potential estimates. J. Eur. Math. Soc. 13, 459–486 (2011)

    MATH  Google Scholar 

  75. Mizuta, Y., Nakai, E., Sawano, Y., Shimomura, T.: Gagliardo–Nirenberg inequality for generalized Riesz potentials of functions in Musielak–Orlicz spaces. Arch. Math. (Basel) 98, 253–263 (2012)

    MATH  Google Scholar 

  76. Mizuta, Y., Nakai, E., Sawano, Y., Shimomura, T.: Littlewood–Paley theory for variable exponent Lebesgue spaces and Gagliardo–Nirenberg inequality for Riesz potentials. J. Math. Soc. Jpn. 65, 633–670 (2013)

    MATH  Google Scholar 

  77. Morrey, C.B.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43, 126–166 (1938)

    MATH  Google Scholar 

  78. Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262, 3665–3748 (2012)

    MATH  Google Scholar 

  79. Nakai, E., Sawano, Y.: Orlicz–Hardy spaces and their duals. Sci. China Math. 57, 903–962 (2014)

    MATH  Google Scholar 

  80. Nakai, E., Tomita, N., Yabuta, K.: Density of the set of all infinitely differentiable functions with compact support in weighted Sobolev spaces. Sci. Math. Jpn. 60, 121–127 (2004)

    MATH  Google Scholar 

  81. Nakano, H.: Modulared Semi-Ordered Linear Spaces. Maruzen Co, Ltd., Tokyo (1950)

    MATH  Google Scholar 

  82. Nakano, H.: Topology of Linear Topological Spaces. Maruzen Co., Ltd., Tokyo (1951)

    Google Scholar 

  83. Nezza, E.D., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    MATH  Google Scholar 

  84. Nguyen, V.H.: Sharp weighted Sobolev and Gagliardo–Nirenberg inequalities on half-spaces via mass transport and consequences. Proc. Lond. Math. Soc. (3) 111, 127–148 (2015)

    MATH  Google Scholar 

  85. Nogayama, T.: Mixed Morrey spaces. Positivity 23, 961–1000 (2019)

    MATH  Google Scholar 

  86. Nogayama, T., Ono, T., Salim, D., Sawano, Y.: Atomic decomposition for mixed Morrey spaces. J. Geom. Anal. 31, 9338–9365 (2021)

    MATH  Google Scholar 

  87. Rao, M.M., Ren, Z.D.: Applications of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 250. Marcel Dekker, New York (2002)

    Google Scholar 

  88. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)

    MATH  Google Scholar 

  89. Sawano, Y.: Theory of Besov Spaces, Developments in Mathematics, vol. 56. Springer, Singapore (2018)

    MATH  Google Scholar 

  90. Sawano, Y., Di Fazio, G., Hakim, D.: Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s, vol. I. Chapman and Hall/CRC, New York (2020)

    MATH  Google Scholar 

  91. Sawano, Y., Di Fazio, G., Hakim, D.: Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s, vol. II. Chapman and Hall/CRC, New York (2020)

    MATH  Google Scholar 

  92. Sawano, Y., El-Shabrawy, S.R.: Weak Morrey spaces with applications. Math. Nachr. 291, 178–186 (2018)

    MATH  Google Scholar 

  93. Sawano, Y., Ho, K.-P., Yang, D., Yang, S.: Hardy spaces for ball quasi-Banach function spaces. Dissertationes Math. (Rozprawy Mat.) 525, 1–102 (2017)

    MATH  Google Scholar 

  94. Sawano, Y., Tanaka, H.: Predual spaces of Morrey spaces with non-doubling measures. Tokyo J. Math. 32, 471–486 (2009)

    MATH  Google Scholar 

  95. Sawano, Y., Tanaka, H.: The Fatou property of block spaces. J. Math. Sci. Univ. Tokyo 22, 663–683 (2015)

    MATH  Google Scholar 

  96. Sawano, Y., Wadade, H.: On the Gagliardo–Nirenberg type inequality in the critical Sobolev–Morrey space. J. Fourier Anal. Appl. 19, 20–47 (2013)

    MATH  Google Scholar 

  97. Stein, E.M., Shakarchi, R.: Functional Analysis. Introduction to Further Topics in Analysis. Princeton Lectures in Analysis, vol. 4. Princeton University Press, Princeton, NJ (2011)

    MATH  Google Scholar 

  98. Tao, J., Yang, Da., Yang, Do.: Boundedness and compactness characterizations of Cauchy integral commutators on Morrey spaces. Math. Methods Appl. Sci. 42, 1631–1651 (2019)

    MATH  Google Scholar 

  99. Tao, J., Yang, D., Yuan, W., Zhang, Y.: Compactness characterizations of commutators on ball Banach function spaces. Potential Anal. (2021). https://doi.org/10.1007/s11118-021-09953-w

    Article  Google Scholar 

  100. Triebel, H.: Theory of Function Spaces. Monographs in Mathematics, vol. 78. Birkhäuser Verlag, Basel (1983)

    Google Scholar 

  101. Wang, F., Yang, D., Yang, S.: Applications of Hardy spaces associated with ball quasi-Banach function spaces. Results Math. 75, 58 (2020). (Paper No. 26)

    MATH  Google Scholar 

  102. Wang, S., Yang, D., Yuan, W., Zhang, Y.: Weak Hardy-type spaces associated with ball quasi-Banach function spaces II: Littlewood–Paley characterizations and real interpolation. J. Geom. Anal. 31, 631–696 (2021)

    MATH  Google Scholar 

  103. Yan, X., He, Z., Yang, D., Yuan, W.: Hardy spaces associated with ball quasi-Banach function spaces on spaces of homogeneous type: Littlewood–Paley characterizations with applications to boundedness of Calderón-Zygmund operators. Acta Math. Sin. (Engl. Ser.) 38, 1133–1184 (2022)

    MATH  Google Scholar 

  104. Yan, X., He, Z., Yang, D., Yuan, W.: Hardy spaces associated with ball quasi-Banach function spaces on spaces of homogeneous type: characterizations of maximal functions, decompositions, and dual spaces. Math. Nachr. (2022). https://doi.org/10.1002/mana.202100432

    Article  Google Scholar 

  105. Yan, X., Yang, D., Yuan, W.: Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces. Front. Math. China 15, 769–806 (2020)

    MATH  Google Scholar 

  106. Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics, vol. 2005. Springer-Verlag, Berlin (2010)

    MATH  Google Scholar 

  107. Zhang, Y., Huang, L., Yang, D., Yuan, W.: New ball Campanato-type function spaces and their applications. J. Geom. Anal. 32, 42 (2022). (Paper No. 99)

    MATH  Google Scholar 

  108. Zhang, Y., Wang, S., Yang, D., Yuan, W.: Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: decompositions with applications to boundedness of Calderón–Zygmund operators. Sci. China Math. 64, 2007–2064 (2021)

    MATH  Google Scholar 

  109. Zhang, Y., Yang, D., Yuan, W., Wang, S.: Real-variable characterizations of Orlicz-slice Hardy spaces. Anal. Appl. (Singap.) 17, 597–664 (2019)

Download references

Acknowledgements

Dachun Yang would like to thank Professor Haïm Brezis and Professor Po-Lam Yung for kindly providing him the reference [17]. The authors would like to sincerely thank both referees for their careful reading and many motivating remarks which lead to Sect. 5.7 and definitely improve the presentation of this article.

Funding

This project is supported by the National Key Research and Development Program of China (Grant No. 2020YFA0712900) and the National Natural Science Foundation of China (Grant Nos. 11971058, 12071197 and 12122102). Feng Dai is supported by NSERC of Canada Discovery grant RGPIN-2020-03909.

Author information

Authors and Affiliations

Authors

Contributions

All authors developed and discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Dachun Yang.

Ethics declarations

Conflict of interest

All authors state no conflict of interest.

Informed consent

Informed consent has been obtained from all individuals included in this research work.

Additional information

Communicated by L. Szekelyhidi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, F., Lin, X., Yang, D. et al. Brezis–Van Schaftingen–Yung formulae in ball Banach function spaces with applications to fractional Sobolev and Gagliardo–Nirenberg inequalities. Calc. Var. 62, 56 (2023). https://doi.org/10.1007/s00526-022-02390-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02390-6

Mathematics Subject Classification

Navigation