Skip to main content
Log in

Compactness Characterizations of Commutators on Ball Banach Function Spaces

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Let X be a ball Banach function space on \({\mathbb R}^{n}\). Let Ω be a Lipschitz function on the unit sphere of \({\mathbb R}^{n}\), which is homogeneous of degree zero and has mean value zero, and let TΩ be the convolutional singular integral operator with kernel Ω(⋅)/|⋅|n. In this article, under the assumption that the Hardy–Littlewood maximal operator \({\mathscr{M}}\) is bounded on both X and its associated space, the authors prove that the commutator [b, TΩ] is compact on X if and only if \(b\in \text {CMO }({\mathbb R}^{n})\). To achieve this, the authors mainly employ three key tools: some elaborate estimates, given in this article, on the norm of X about the commutators and the characteristic functions of some measurable subsets, which are implied by the assumed boundedness of \({\mathcal M}\) on X and its associated space as well as the geometry of \(\mathbb R^{n}\); the complete John–Nirenberg inequality in X obtained by Y. Sawano et al.; the generalized Fréchet–Kolmogorov theorem on X also established in this article. All these results have a wide range of applications. Particularly, even when \(X:=L^{p(\cdot )}({\mathbb R}^{n})\) (the variable Lebesgue space), \(X:=L^{\vec {p}}({\mathbb R}^{n})\) (the mixed-norm Lebesgue space), \(X:=L^{\Phi }({\mathbb R}^{n})\) (the Orlicz space), and \(X:=(E_{\Phi }^{q})_{t}({\mathbb R}^{n})\) (the Orlicz-slice space or the generalized amalgam space), all these results are new.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, D.R.: Morrey Spaces. Birkhäuser/Springer, Cham (2015)

  2. Adams, D.R., Xiao, J.: Nonlinear potential analysis on Morrey spaces and their capacities. Ind. Univ. Math. J. 53, 1629–1663 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andersen, K.F., John, R.T.: Weighted inequalities for vecter-valued maximal functions and singular integrals. Studia Math. 69, 19–31 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arai, R., Nakai, E.: Commutators of Calderón–Zygmund and generalized fractional integral operators on generalized Morrey spaces. Rev. Mat. Complut. 31, 287–331 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arai, R., Nakai, E.: An extension of the characterization of CMO and its application to compact commutators on Morrey spaces. J. Math. Soc. Japan 72, 507–539 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Astala, K., Iwaniec, T., Koskela, P., Martin, G.: Mappings of BMO-bounded distortion. Math. Ann. 317, 703–726 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Auscher, P., Mourgoglou, M.: Representation and uniqueness for boundary value elliptic problems via first order systems. Rev. Mat. Iberoam. 35, 241–315 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Auscher, P., Prisuelos-Arribas, C.: Tent space boundedness via extrapolation. Math. Z. 286, 1575–1604 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Benedek, A., Panzone, R.: The space Lp, with mixed norm. Duke Math. J. 28, 301–324 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bennett, C., Sharpley, R.: Interpolation of Operators. Pure Appl. Math., vol. 129. Academic Press, Boston, MA (1988)

    Google Scholar 

  11. Birnbaum, Z., Orlicz, W.: ÜBer die verallgemeinerung des begriffes der zueinander konjugierten potenzen. Studia Math. 3, 1–67 (1931)

    Article  MATH  Google Scholar 

  12. Bokayev, N.A., Burenkov, V.I., Matin, D.T.: On precompactness of a set in general local and global Morrey-type spaces. Eurasian. Math. J. 8, 109–115 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Chaffee, L., Cruz-Uribe, D.: Necessary conditions for the boundedness of linear and bilinear commutators on Banach function spaces. Math. Inequal. Appl. 21, 1–16 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Chang, D.-C., Wang, S., Yang, D., Zhang, Y.: Littlewood–Paley characterizations of Hardy-type spaces associated with ball quasi-Banach function spaces. Complex Anal. Oper. Theory 14, Paper No. 40, 1–33 (2020)

  15. Chen, J., Hu, G.: Compact commutators of rough singular integral operators. Canad. Math. Bull. 58, 19–29 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, Y., Deng, Q., Ding, Y.: Commutators with fractional differentiation for second-order elliptic operators on \(\mathbb {R}^{n}\). Commun. Contemp. Math. 22(1950010), 1–29 (2020)

    MathSciNet  Google Scholar 

  17. Chen, Y., Ding, Y.: Lp bounds for the commutators of singular integrals and maximal singular integrals with rough kernels. Trans. Amer. Math. Soc. 367, 1585–1608 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, Y., Ding, Y., Hong, G.: Commutators with fractional differentiation and new characterizations of BMO-Sobolev spaces. Anal. PDE 9, 1497–1522 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, Y., Ding, Y., Wang, X.: Compactness of commutators for singular integrals on Morrey spaces. Canad. J. Math. 64, 257–281 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cheung, K., Ho, K.-P.: Boundedness of Hardy–Littlewood maximal operator on block spaces with variable exponent. Czechoslovak Math. J. 64(139), 159–171 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chiarenza, F., Frasca, M.: Morrey spaces and Hardy–Littlewood maximal function. Rend. Mat. Appl. (7) 7, 273–279 (1987)

    MathSciNet  MATH  Google Scholar 

  22. Cleanthous, G., Georgiadis, A.G., Nielsen, M.: Discrete decomposition of homogeneous mixed-norm Besov spaces. In: Functional Analysis, Harmonic Analysis, and Image Processing: a Collection of Papers in Honor of Björn Jawerth, vol. 693, pp 167–184. Contemp. Math. Amer. Math. Soc., Providence (2017)

  23. Clop, A., Cruz, V.: Weighted estimates for Beltrami equations. Ann. Acad. Sci. Fenn. Math. 38, 91–113 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Coifman, R.R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. of Math. (2) 103, 611–635 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cruz-Uribe, D.V.: Extrapolation and factorization. arXiv:1706.02620

  26. Cruz-Uribe, D.V., Fiorenza, A.: Variable Lebesgue Space. Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Heidelberg (2013)

  27. Cruz-Uribe, D.V., Wang, L.A.D.: Variable Hardy spaces. Ind. Univ. Math. J. 63, 447–493 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Diening, L., Hästö, P., Roudenko, S.: Function spaces of variable smoothness and integrability. J. Funct. Anal. 256, 1731–1768 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Diening, L., Harjulehto, P., Hästö, P., Ruz̆ic̆ka, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011)

  30. Di Fazio, G., Ragusa, M.A.: Commutators and Morrey spaces. Boll. Un. Mat. Ital. A (7)5, 323–332 (1991)

    MathSciNet  MATH  Google Scholar 

  31. Duoandikoetxea, J.: Fourier Analysis. Graduate Studies in Mathematics, vol. 29. American Mathematical Society, Providence (2001)

    Google Scholar 

  32. Georgiadis, A.G., Johnsen, J., Nielsen, M.: Wavelet transforms for homogeneous mixed-norm Triebel–Lizorkin spaces. Monatsh Math. 183, 587–624 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Grafakos, L.: Classical Fourier Analysis. Third edition. Graduate Texts in Mathematics, vol. 249. Springer, New York (2014)

    Google Scholar 

  34. Guliyev, V., Omarova, M., Sawano, Y.: Boundedness of intrinsic square functions and their commutators on generalized weighted Orlicz–Morrey spaces. Banach J. Math. Anal. 9, 44–62 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Guo, X., Hu, G.: On the commutators of singular integral operators with rough convolution kernels. Canad. J. Math. 68, 816–840 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Guo, W., Lian, J., Wu, H.: The unified theory for the necessity of bounded commutators and applications. J. Geom. Anal. 30, 3995–4035 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Guo, W., Wu, H., Yang, D.: A revised on the compactness of commutators. Canad. J. Math. https://doi.org/10.4153/S0008414X20000644 (2020)

  38. Guo, W., Zhao, G.: On relatively compact sets in quasi-Banach function spaces. Proc. Amer. Math. Soc. 148, 3359–3373 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ho, K.-P.: Atomic decomposition of Hardy–Morrey spaces with variable exponents. Ann. Acad. Sci. Fenn. Math. 40, 31–62 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ho, K.-P.: Dilation operators and integral operators on amalgam space (Lp, lq). Ric. Mat. 68, 661–677 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Holland, F.: Harmonic analysis on amalgams of Lp and lq. J. London Math. Soc. (2) 10, 295–305 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hörmander, L.: Estimates for translation invariant operators in Lp spaces. Acta Math. 104, 93–140 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  43. Huang, L., Chang, D.-C., Yang, D.: Fourier transform of Hardy spaces associated with ball quasi-Banach function spaces. Appl Anal. https://doi.org/10.1142/S0219530521500135 (2021)

  44. Huang, L., Liu, J., Yang, D., Yuan, W.: Atomic and Littlewood–Paley characterizations of anisotropic mixed-norm Hardy spaces and their applications. J. Geom. Anal. 29, 1991–2067 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  45. Huang, L., Liu, J., Yang, D., Yuan, W.: Dual spaces of anisotropic mixed-norm Hardy spaces. Proc. Amer. Math. Soc. 147, 1201–1215 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Huang, L., Yang, D.: On function spaces with mixed norms — a survey. J. Math. Study 54, 262–336 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  47. Iwaniec, T.: Lp-theory of quasiregular mappings. In: Quasiconformal Space Mappings. Lecture Notes in Math. vol. 1508, pp. 39–64. Springer, Berlin (1992)

  48. Izuki, M., Noi, T., Sawano, Y.: The John–Nirenberg inequality in ball Banach function spaces and application to characterization of BMO. J. Inequal. Appl. Paper No. 268, pp. 11 (2019)

  49. Izuki, M., Sawano, Y.: Characterization of BMO via ball Banach function spaces. Vestn. St.-Peterbg. Univ. Mat. Mekh. Astron. 4(62), 78–86 (2017)

    MathSciNet  Google Scholar 

  50. Jia, H., Wang, H.: Decomposition of Hardy–Morrey spaces. J. Math. Anal. Appl. 354, 99–110 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  51. John, F., Nirenberg, L.: On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14, 415–426 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  52. Karlovich, A., Lerner, A.: Commutators of singular integrals on generalized Lp spaces with variable exponent. Publ. Mat. 49, 111–125 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  53. Kikuchi, N., Nakai, E., Tomita, N., Yabuta, K., Yoneda, T.: Calderón–Zygmund operators on amalgam spaces and in the discrete case. J. Math. Anal. Appl. 335, 198–212 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kováčik, O., Rákosník, J.: On spaces Lp(x) and Wk, p(x). Czechoslovak. Math. J. 41(116), 592–618 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  55. Krantz, S.G., Li, S.Y.: Boundedness and compactness of integral operators on spaces of homogeneous type and applications. II. J. Math. Anal. Appl. 258, 642–657 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  56. Lerner, A.K., Ombrosi, S., Rivera-Ríos, I.P.: Commutators of singular integrals revisited. Bull. Lond. Math. Soc. 51, 107–119 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  57. Lizorkin, P.I.: Multipliers of Fourier integrals and estimates of convolutions in spaces with mixed norm. applications. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 34, 218–247 (1970)

    MathSciNet  Google Scholar 

  58. Lu, S., Ding, Y., Yan, D.: Singular Integrals and Related Topics. World Scientific Publishing Co. Pte. Ltd., Hackensack (2007)

  59. Martínez, S., Wolanski, N.: A minimum problem with free boundary in Orlicz spaces. Adv. Math. 218, 1914–1971 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  60. Morrey, C.B.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc. 43, 126–166 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  61. Nakano, H.: Modulared Semi-Ordered Linear Spaces. Maruzen, Tokyo (1950)

    MATH  Google Scholar 

  62. Nakano, H.: Topology of Linear Topological Spaces. Maruzen, Tokyo (1951)

    Google Scholar 

  63. Nakamura, S., Sawano, Y.: The singular integral operator and its commutator on weighted Morrey spaces. Collect. Math. 68, 145–174 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  64. Nogayama, T.: Mixed Morrey spaces. Positivity 23, 961–1000 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  65. Nogayama, T., Ono, T., Salim, D., Sawano, Y.: Atomic decomposition for mixed Morrey spaces. J. Geom. Anal. 31, 9338–9365 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  66. Orlicz, W.: ÜBer eine gewisse Klasse von räumen vom typus B. Bull. Inst. Acad. Pol. Ser. A 8, 207–220 (1932)

    MATH  Google Scholar 

  67. Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics, vol. 146. Marcel Dekker, Inc., New York (1991)

    Google Scholar 

  68. Sawano, Y.: Theory of Besov Spaces. Developments in Mathematics, vol. 56. Springer, Singapore (2018)

    Book  Google Scholar 

  69. Sawano, Y., Shirai, S.: Compact commutators on Morrey spaces with non-doubling measures. Georgian Math. J. 15, 353–376 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  70. Sawano, Y., Tanaka, H.: The Fatou property of block spaces. J. Math. Sci. Univ. Tokyo 22, 663–683 (2015)

    MathSciNet  MATH  Google Scholar 

  71. Sawano, Y., Ho, K.-P., Yang, D., Yang, S.: Hardy spaces for ball quasi-Banach function spaces. Dissertationes. Math. (Rozprawy Mat.) 525, 1–102 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  72. Sawano, Y., Di Fazio, G., Hakim, D.: Morrey Spaces. Introduction and Applications to Integral Operators and PDE’s, vol. I. Chapman and Hall/CRC, New York (2020)

    MATH  Google Scholar 

  73. Sawano, Y., Di Fazio, G., Hakim, D.: Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s, vol. II. Chapman and Hall/CRC, New York (2020)

    Book  MATH  Google Scholar 

  74. Tao, J., Yang, D.: Boundedness and compactness characterizations of Cauchy integral commutators on Morrey spaces. Math. Methods Appl. Sci. 42, 1631–1651 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  75. Tao, J., Yang, Da, Yang, Do: Beurling–Ahlfors commutators on weighted Morrey spaces and applications to Beltrami equations. Potential Anal. 53, 1467–1491 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  76. Uchiyama, A.: On the compactness of operators of Hankel type. Tôhoku Math. J. (2) 30, 163–171 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  77. Wang, F., Yang, D., Yang, S.: Applications of Hardy spaces associated with ball quasi-Banach function spaces. Results Math. 75, Paper No. 26, 1–58 (2020)

  78. Wang, S., Yang, D., Yuan, W., Zhang, Y.: Weak Hardy-type spaces associated with ball quasi-Banach function spaces II: Littlewood–Paley characterizations and real interpolation. J. Geom. Anal. 31, 631–696 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  79. Yan, X., Yang, D., Yuan, W.: Intrinsic square function characterizations of several Hardy-type spaces — a survey. Anal. Theory Appl. (to appear)

  80. Yan, X., Yang, D., Yuan, W.: Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces. Front. Math. China 15, 769–806 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  81. Yosida, K.: Functional Analysis. Classics in Mathematics. Springer, Berlin (1995)

  82. Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics, vol. 2005. Springer, Berlin (2010)

  83. Zhang, Y., Yang, D., Yuan, W., Wang, S.: Real-variable characterizations of Orlicz-slice Hardy spaces. Anal. Appl. (Singap.) 17, 597–664 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  84. Zhang, Y., Huang, L., Yang, D., Yuan, W.: New ball Campanato-type function spaces and their applications. J. Geom. Anal. (to appear)

  85. Zhang, Y., Wang, S., Yang, D., Yuan, W.: Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: Decompositions with applications to boundedness of Calderón–Zygmund operators. Sci. China Math. 64, 2007–2064 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professors Huoxiong Wu and Qingying Xue for some useful discussions on the subject of this article. The authors would also like to thank both two referees and the associate editor for their carefully reading and several motivating remarks which indeed improve the quality of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dachun Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This project is partially supported by the National Natural Science Foundation of China (Grant Nos. 11971058, 12071197, 12122102 and 11871100) and the National Key Research and Development Program of China (Grant No. 2020YFA0712900).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, J., Yang, D., Yuan, W. et al. Compactness Characterizations of Commutators on Ball Banach Function Spaces. Potential Anal 58, 645–679 (2023). https://doi.org/10.1007/s11118-021-09953-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-021-09953-w

Keywords

Mathematics Subject Classification (2010)

Navigation