Skip to main content
Log in

On subhomogeneous indefinite p-Laplace equations in the supercritical spectral interval

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the existence, multiplicity, and certain qualitative properties of solutions to the zero Dirichlet problem for the equation \(-\Delta _p u = \lambda |u|^{p-2}u + a(x)|u|^{q-2}u\) in a bounded domain \(\Omega \subset {\mathbb {R}}^N\), where \(1<q<p\), \(\lambda \in {\mathbb {R}}\), and a is a sign-changing weight function. Our primary interest concerns ground states and nonnegative solutions which are positive in \(\{x\in \Omega : a(x)>0\}\), when the parameter \(\lambda \) lies in a neighborhood of the critical value \(\lambda ^* := \inf \left\{ \int _\Omega |\nabla u|^p \, dx/\int _\Omega |u|^p \, dx: u\in W_0^{1,p}(\Omega ) {\setminus } \{0\},\ \int _\Omega a|u|^q\,dx \ge 0\,\right\} \). Among main results, we show that if \(p>2q\) and either \(\int _\Omega a\varphi _p^q\,dx=0\) or \(\int _\Omega a\varphi _p^q\,dx>0\) is sufficiently small, then such solutions do exist in a right neighborhood of \(\lambda ^*\). Here \(\varphi _p\) is the first eigenfunction of the Dirichlet p-Laplacian in \(\Omega \). This existence phenomenon is of a purely subhomogeneous and nonlinear nature, since either in the superhomogeneous case \(q>p\) or in the sublinear case \(q<p=2\) the nonexistence takes place for any \(\lambda \ge \lambda ^*\). Moreover, we prove that if \(p>2q\) and \(\int _\Omega a\varphi _p^q\,dx>0\) is sufficiently small, then there exist three nonzero nonnegative solutions in a left neighborhood of \(\lambda ^*\), two of which are strictly positive in \(\{x\in \Omega : a(x)>0\}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. Throughout this work, the words “positive” and “negative” mean “\(>0\) ” and “\(<0\) ”, respectively. The word “strictly” will be used occasionally for accentuation and clarification.

  2. When commenting on the superhomogeneous case \(q>p\), we always assume that \(q<p^*\), where \(p^*\) is the critical Sobolev exponent for \(N \ge 3\), and \(p^*=+\infty \) for \(N=1,2\).

  3. Throughout this work, the diacritic “tilde” over a capital letter always corresponds to the presence of the truncated integrals \(\int _\Omega u_+^p\,dx\) and \(\int _\Omega a u_+^q\,dx\) instead of their untruncated counterparts \(\int _\Omega |u|^p\,dx\) and \(\int _\Omega a |u|^q\,dx\).

References

  1. Alama, S.: Semilinear elliptic equations with sublinear indefinite nonlinearities. Adv. Differ. Equ. 4(6), 813–842 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Alama, S., Del Pino, M.: Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking. Annales de l’Institut Henri Poincaré C, Analyse non linéaire 13(1), 95–115 (1996). https://doi.org/10.1016/S0294-1449(16)30098-1

    Article  MathSciNet  MATH  Google Scholar 

  3. Alama, S., Tarantello, G.: On semilinear elliptic equations with indefinite nonlinearities. Calc. Var. Partial. Differ. Equ. 1(4), 439–475 (1993). https://doi.org/10.1007/BF01206962

    Article  MathSciNet  MATH  Google Scholar 

  4. Allegretto, W., Huang, Y.: A Picone’s identity for the \(p\)-Laplacian and applications. Nonlinear Anal. Theory Methods Appl. 32(7), 819–830 (1998). https://doi.org/10.1016/S0362-546X(97)00530-0

    Article  MathSciNet  MATH  Google Scholar 

  5. Balabane, M., Dolbeault, J., Ounaies, H.: Nodal solutions for a sublinear elliptic equation. Nonlinear Anal. Theory Methods Appl. 52(1), 219–237 (2003). https://doi.org/10.1016/S0362-546X(02)00104-9

    Article  MathSciNet  MATH  Google Scholar 

  6. Bandle, C., Pozio, M.A., Tesei, A.: The asymptotic behavior of the solutions of degenerate parabolic equations. Trans. Am. Math. Soc. 303(2), 487–501 (1987). https://doi.org/10.1090/S0002-9947-1987-0902780-3

    Article  MathSciNet  MATH  Google Scholar 

  7. Berestycki, H., Capuzzo-Dolcetta, I., Nirenberg, L.: Variational methods for indefinite superlinear homogeneous elliptic problems. Nonlinear Differ. Equ. Appl. 2(4), 553–572 (1995). https://doi.org/10.1007/BF01210623

    Article  MathSciNet  MATH  Google Scholar 

  8. Bobkov, V., Tanaka, M.: Remarks on minimizers for \((p, q)\)-Laplace equations with two parameters. Commun. Pure Appl. Anal. 17(3), 1219–1253 (2018). https://doi.org/10.3934/cpaa.2018059

    Article  MathSciNet  MATH  Google Scholar 

  9. Bobkov, V., Tanaka, M.: Generalized Picone inequalities and their applications to \((p, q)\)-Laplace equations. Open Math. 18(1), 1030–1044 (2020). https://doi.org/10.1515/math-2020-0065

    Article  MathSciNet  MATH  Google Scholar 

  10. Bobkov, V., Tanaka, M.: Multiplicity of positive solutions for \((p, q)\)-Laplace equations with two parameters. Commun. Contemp. Math. 24(03), 2150008 (2022). https://doi.org/10.1142/S0219199721500085

    Article  MathSciNet  MATH  Google Scholar 

  11. Bonheure, D., Santos, E.M.D., Parini, E., Tavares, H., Weth, T.: Nodal Solutions for sublinear-type problems with Dirichlet boundary conditions. Int. Math. Res. Not. (2020). https://doi.org/10.1093/imrn/rnaa233

    Article  MATH  Google Scholar 

  12. Brasco, L., Franzina, G.: An overview on constrained critical points of Dirichlet integrals. Rendiconti del Seminario Matematico, Università e Politecnico di Torino 78(2), 7–50 (2019). (http://www.seminariomatematico.polito.it/rendiconti/78-2.html)

    MathSciNet  MATH  Google Scholar 

  13. Brown, K.J.: The Nehari manifold for a semilinear elliptic equation involving a sublinear term. Calc. Var. Partial. Differ. Equ. 22(4), 483–494 (2004). https://doi.org/10.1007/s00526-004-0289-2

    Article  MathSciNet  MATH  Google Scholar 

  14. Chipot, M.: Elliptic Equations: An Introductory Course. Birkhäuser, Basel (2009). https://doi.org/10.1007/978-3-7643-9982-5

    Book  MATH  Google Scholar 

  15. Cuesta, M., Takáč, P.: A strong comparison principle for positive solutions of degenerate elliptic equations. Differ. Integr. Equ. 13(4–6), 721–746 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Díaz, J.I.: Nonlinear Partial Differential Equations and Free Boundaries. Vol. 1: Elliptic Equations. Pitman Advanced Publishing Program, Boston (1985)

    Google Scholar 

  17. Díaz, J.I., Hernández, J.: Global bifurcation and continua of nonnegative solutions for a quasilinear elliptic problem. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics 329(7), 587–592 (1999). https://doi.org/10.1016/S0764-4442(00)80006-3

    Article  MathSciNet  MATH  Google Scholar 

  18. Díaz, J.I., Hernández, J., Il’yasov, Y.: On the existence of positive solutions and solutions with compact support for a spectral nonlinear elliptic problem with strong absorption. Nonlinear Anal. Theory Methods Appl. 119, 484–500 (2015). https://doi.org/10.1016/j.na.2014.11.019

    Article  MathSciNet  MATH  Google Scholar 

  19. DiBenedetto, E.: \(C^{1+\alpha }\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. Theory Methods Appl. 7(8), 827–850 (1983). https://doi.org/10.1016/0362-546X(83)90061-5

    Article  MATH  Google Scholar 

  20. Dinca, G., Jebelean, P., Mawhin, J.: Variational and topological methods for Dirichlet problems with \(p\)-Laplacian. Port. Math. 58(3), 339 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Drábek, P., Manásevich, R.: On the closed solution to some nonhomogeneous eigenvalue problems with \(p\)-Laplacian. Differ. Integr. Equ. 12(6), 773–788 (1999)

    MathSciNet  MATH  Google Scholar 

  22. Drábek, P., Pohozaev, S.I.: Positive solutions for the \(p\)-Laplacian: application of the fibrering method. Proc. R. Soc. Edinb. Sect. A Math. 127(4), 703–726 (1997). https://doi.org/10.1017/S0308210500023787

    Article  MATH  Google Scholar 

  23. Fleckinger-Pellé, J., Takáč, P.: An improved Poincaré inequality and the \(p\)-Laplacian at resonance for \(p>2\). Adv. Differ. Equ. 7(8), 951–971 (2002)

    MATH  Google Scholar 

  24. Franchi, B., Lanconelli, E., Serrin, J.: Existence and uniqueness of nonnegative solutions of quasilinear equations in \(R^n\). Adv. Math. 118(2), 177–243 (1996). https://doi.org/10.1006/aima.1996.0021

    Article  MathSciNet  MATH  Google Scholar 

  25. Il’yasov, Y.: On positive solutions of indefinite elliptic equations. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics 333(6), 533–538 (2001). https://doi.org/10.1016/S0764-4442(01)01924-3

    Article  MathSciNet  MATH  Google Scholar 

  26. Il’yasov, Y.S.: Non-local investigation of bifurcations of solutions of non-linear elliptic equations. Izv. Math. 66(6), 1103–1130 (2002). https://doi.org/10.1070/IM2002v066n06ABEH000408

    Article  MathSciNet  MATH  Google Scholar 

  27. Ilyasov, Y., Silva, K.: On branches of positive solutions for \(p\)-Laplacian problems at the extreme value of the Nehari manifold method. Proc. Am. Math. Soc. 146(7), 2925–2935 (2018). https://doi.org/10.1090/proc/13972

    Article  MathSciNet  MATH  Google Scholar 

  28. Kajikiya, R.: Symmetric mountain pass lemma and sublinear elliptic equations. J. Differ. Equ. 260(3), 2587–2610 (2016). https://doi.org/10.1016/j.jde.2015.10.016

    Article  MathSciNet  MATH  Google Scholar 

  29. Kaufmann, U., Quoirin, H.R., Umezu, K.: A curve of positive solutions for an indefinite sublinear Dirichlet problem. Discrete Contin. Dyn. Syst. 40(2), 617–645 (2020). https://doi.org/10.3934/dcds.2020063

    Article  MathSciNet  MATH  Google Scholar 

  30. Kaufmann, U., Ramos Quoirin, H.: Nonnegative solutions of an indefinite sublinear Robin problem I: positivity, exact multiplicity, and existence of a subcontinuum. Annali di Matematica Pura ed Applicata 1923 199(5), 2015–2038 (2020). https://doi.org/10.1007/s10231-020-00954-x

    Article  MathSciNet  MATH  Google Scholar 

  31. Kaufmann, U., Quoirin, H.R., Umezu, K.: Past and recent contributions to indefinite sublinear elliptic problems. Rendiconti dell’Istituto di Matematica dell’Universitá di Trieste 52, 217–241 (2020). https://doi.org/10.13137/2464-8728/30913

    Article  MathSciNet  MATH  Google Scholar 

  32. Kaufmann, U., Quoirin, H.R., Umezu, K.: Uniqueness and positivity issues in a quasilinear indefinite problem. Calc. Var. Partial. Differ. Equ. 60(5), 187 (2021). https://doi.org/10.1007/s00526-021-02057-8

    Article  MathSciNet  MATH  Google Scholar 

  33. Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. Theory Methods Appl. 12(11), 1203–1219 (1988). https://doi.org/10.1016/0362-546X(88)90053-3

    Article  MathSciNet  MATH  Google Scholar 

  34. Lindqvist, P.: On the equation \(\text{ div }(|\nabla u|^{p-2}\nabla u) + \lambda |u|^{p-2}u = 0\). Proc. Am. Math. Soc. (1990). https://doi.org/10.2307/2048375

    Article  MATH  Google Scholar 

  35. Miyajima, S., Motreanu, D., Tanaka, M.: Multiple existence results of solutions for the Neumann problems via super-and sub-solutions. J. Funct. Anal. 262(4), 1921–1953 (2012). https://doi.org/10.1016/j.jfa.2011.11.028

    Article  MathSciNet  MATH  Google Scholar 

  36. Moroz, V.: On the Morse critical groups for indefinite sublinear elliptic problems. Nonlinear Anal. Theory Methods Appl. 52(5), 1441–1453 (2003). https://doi.org/10.1016/S0362-546X(02)00174-8

    Article  MathSciNet  MATH  Google Scholar 

  37. Müller, C.: On the behavior of the solutions of the differential equation \(\Delta U= F(x, U)\) in the neighborhood of a point. Commun. Pure Appl. Math. 7(3), 505–515 (1954). https://doi.org/10.1002/cpa.3160070304

    Article  MathSciNet  MATH  Google Scholar 

  38. Ouyang, T.: On the positive solutions of semilinear equations \(\Delta u+ \lambda u+ h u^p= 0\) on compact manifolds. Part II. Indiana Univ. Math. J. 40(3), 1083–1141 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pucci, P., Serrin, J.: A mountain pass theorem. J. Differ. Equ. 60(1), 142–149 (1985). https://doi.org/10.1016/0022-0396(85)90125-1

    Article  MathSciNet  MATH  Google Scholar 

  40. Pucci, P., Serrin, J.: The strong maximum principle revisited. J. Differ. Equ. 196(1), 1–66 (2004). https://doi.org/10.1016/j.jde.2003.05.001

    Article  MathSciNet  MATH  Google Scholar 

  41. Quoirin, H.R., Silva, K.: Local minimizers for a class of functionals over the Nehari set. arXiv:2107.00777 (2022)

  42. Silva, K., Macedo, A.: Local minimizers over the Nehari manifold for a class of concave-convex problems with sign changing nonlinearity. J. Differ. Equ. 265(5), 1894–1921 (2018). https://doi.org/10.1016/j.jde.2018.04.018

    Article  MathSciNet  MATH  Google Scholar 

  43. Struwe, M.: Variational Methods, vol. 991. Springer, Berlin (2000). https://doi.org/10.1007/978-3-540-74013-1

    Book  MATH  Google Scholar 

  44. Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51(1), 126–150 (1984). https://doi.org/10.1016/0022-0396(84)90105-0

    Article  MathSciNet  MATH  Google Scholar 

  45. Zeidler, E.: Nonlinear Functional Analysis and its Application III: Variational Methods and Optimization. Springer, Berlin (1985). https://doi.org/10.1007/978-1-4612-5020-3

    Book  MATH  Google Scholar 

Download references

Acknowledgements

V. Bobkov was supported by RSF Grant Number 22-21-00580, https://rscf.ru/en/project/22-21-00580/. M. Tanaka was supported by JSPS KAKENHI Grant Number JP 19K03591. The authors are grateful to the anonymous referee whose valuable comments and suggestions helped to improve the results and clarify the text of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Bobkov.

Additional information

Communicated by A. Neves.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobkov, V., Tanaka, M. On subhomogeneous indefinite p-Laplace equations in the supercritical spectral interval. Calc. Var. 62, 22 (2023). https://doi.org/10.1007/s00526-022-02322-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02322-4

Mathematics Subject Classification

Navigation