Skip to main content
Log in

Blow-up solutions to the Monge–Ampère equation with a gradient term: sharp conditions for the existence and asymptotic estimates

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the boundary blow-up Monge–Ampère problem with a gradient term

$$\begin{aligned} M[u]=K(x)f(u)|\nabla u|^q \text{ for } x \in \Omega ,\; u(x)\rightarrow +\infty \text{ as } \mathrm{dist}(x,\partial \Omega )\rightarrow 0, \end{aligned}$$

where \(M[u]=\det \, (u_{x_{i}x_{j}})\) is the Monge–Ampère operator, \(q\ge 0\), \(\Omega \) is a smooth, bounded, strictly convex domain in \( \mathbb {R}^N \, (N\ge 2)\), and K, f are smooth positive functions. Under K and q satisfying suitable conditions, we first prove that the above boundary blow-up problem admits a strictly convex solution if and only if f satisfies a Keller–Osserman type condition. Then we show the asymptotic behavior of strictly convex solutions to the boundary blow-up Monge–Ampère problem under a new weaker condition than previous references. Finally, we also show the existence of strictly convex solutions under appropriate assumptions on K and q, without assuming that f satisfies a Keller–Osserman type condition. On the technical level, we adopt the sub-supersolution method and the Karamata regular variation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng, S.Y., Yau, S.T.: On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation. Commun. Pure Appl. Math. 33, 507–544 (1980)

    Article  Google Scholar 

  2. Cheng, S. Y., Yau, S. T.: The real Monge–Ampère equation and affine flat structures. In: Chern, S.S., Wu, W. (eds.) Proceedings of 1980 Beijing Symposium on Differential Geometry and Differential Equations, vol. 1, pp. 339–370. Science Press, New York (1982)

  3. Lazer, A.C., McKenna, P.J.: On singular boundary value problems for the Monge–Ampère operator. J. Math. Anal. Appl. 197, 341–362 (1996)

    Article  MathSciNet  Google Scholar 

  4. Caffarelli, L.: Interior \(W^{2, p}\) estimates for solutions of the Monge–Ampère equation. Ann. Math. 131, 135–150 (1990)

    Article  MathSciNet  Google Scholar 

  5. Caffarelli, L., KOHN, J.J., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second-order elliptic equations II. Complex Monge-Ampère equations, and uniformly elliptic equations. Commun. Pure Appl. Math. 38, 209–252 (1985)

  6. Cheng, S.Y., Yau, S.T.: On the regularity of the Monge-Ampère equation \(\text{ det }((\partial ^2u/\partial x_{i}\partial x_{j})) = F(x, u),\) Comm. Pure Appl. Math. 30, 41–68 (1977)

    Article  Google Scholar 

  7. Trudinger, N., Wang, X.: The Monge–Amp\(\grave{e}\)re equation and its geometric applications. Handbook of geometric analysis 1, 467–524 (2008)

  8. Trudinger, N., Wang, X.: Boundary regularity for the Monge–Ampère and affine maximal surface equations. Ann. Math. 167, 993–1028 (2008)

    Article  MathSciNet  Google Scholar 

  9. Wang, X.: Existence of multiple solutions to the equations of Monge–Ampère Type. J. Differ. Equ. 100, 95–118 (1992)

    Article  Google Scholar 

  10. Cîrstea, F., Trombetti, C.: On the Monge–Ampère equation with boundary blow-up: existence, uniqueness and asymptotics. Calc. Var. Part. Differ. Equ. 31, 167–186 (2008)

    Article  Google Scholar 

  11. De Philippis, G., Figalli, A.: Second order stability for the Monge–Ampère equation and strong Sobolev convergence of optimal transport maps. Anal. PDE. 6, 993–1000 (2013)

    Article  MathSciNet  Google Scholar 

  12. Figalli, A., Loeper, G.: \(C^1\) regularity of solutions of the Monge–Ampère equation for optimal transport in dimension two. Calc. Var. Part. Differ. Equ. 35, 537–550 (2009)

    Article  Google Scholar 

  13. Jian, H., Wang, X., Zhao, Y.: Global smoothness for a singular Monge–Ampère equation. J. Differ. Equ. 263, 7250–7262 (2017)

    Article  Google Scholar 

  14. Li, Y., Lu, S.: Existence and nonexistence to exterior Dirichlet problem for Monge–Ampère equation. Calc. Var. Part. Differ. Equ. 57, 161 (2018)

    Article  Google Scholar 

  15. Savin, O.: Pointwise \(C^{2,\alpha }\) estimates at the boundary for the Monge–Ampère equation. J. Am. Math. Soc. 26, 63–99 (2013)

    Article  Google Scholar 

  16. Tso, K.: On a real Monge–Ampère functional. Invent. Math. 101, 425–448 (1990)

    Article  MathSciNet  Google Scholar 

  17. Bao, J., Li, H.: On the exterior Dirichlet problem for the Monge–Ampère equation in dimension two. Nonlinear Anal. 75, 6448–6455 (2012)

    Article  MathSciNet  Google Scholar 

  18. Ju, H., Bao, J.: On the exterior Dirichlet problem for Monge–Ampère equations. J. Math. Anal. Appl. 405, 475–483 (2013)

    Article  MathSciNet  Google Scholar 

  19. Yang, H., Chang, Y.: On the blow-up boundary solutions of the Monge–Ampère equation with singular weights. Commun. Pure Appl. Anal. 11, 697–708 (2012)

    Article  MathSciNet  Google Scholar 

  20. Dai, G.: Two Whyburn type topological theorems and its applications to Monge–Ampère equations. Calc. Var. Part. Differ. Equ. 55, 1–28 (2016)

    Article  Google Scholar 

  21. Matero, J.: The Bieberbach-Rademacher problem for the Monge–Ampère operator. Manuscripta Math. 91, 379–391 (1996)

    Article  MathSciNet  Google Scholar 

  22. Mohammed, A.: Existence and estimates of solutions to a singular Dirichlet problem for the Monge–Ampère equation. J. Math. Anal. Appl. 340, 1226–1234 (2008)

    Article  MathSciNet  Google Scholar 

  23. Mohammed, A.: On the existence of solutions to the Monge-Ampère equation with infinite boundary values. Proc. Am. Math. Soc. 135, 141–149 (2007)

    Article  Google Scholar 

  24. Keller, J.B.: On solutions of \(\Delta u=f(u)\). Commun. Pure Appl. Math. 10, 503–510 (1957)

    Article  Google Scholar 

  25. Osserman, R.: On the inequality \(\Delta u\ge f(u)\). Pacific J. Math. 7, 1641–1647 (1957)

    Article  MathSciNet  Google Scholar 

  26. Zhang, X., Du, Y.: Sharp conditions for the existence of boundary blow-up solutions to the Monge–Ampère equation. Calc. Var. Part. Differ. Equ. 57, 30 (2018)

    Article  Google Scholar 

  27. Chuaqui, M., Cortázar, C., Elgueta, M., Flores, C., García-Melián, J., Letelier, R.: On an elliptic problem with boundary blow-up and a singular weight: the radial case. Proc. R. Soc. Edinburgh 133, 1283–1297 (2003)

    Article  MathSciNet  Google Scholar 

  28. Crandall, M.G., Rabinowitz, P.H., Tartar, L.: On a Dirichlet problem with a singular nonlinearity. Comm. Part. Differ. Equ. 2, 193–222 (1977)

    Article  MathSciNet  Google Scholar 

  29. Pan, X., Wang, X.: Blow-up behavior of ground states of semilinear elliptic equations in \(R^n\) involving critical sobolev exponents. J. Differ. Equ. 99, 78–107 (1992)

    Article  Google Scholar 

  30. Cîrstea, F., Du, Y.: General uniqueness results and variation speed for blow-up solutions of elliptic equations. Proc. Lond. Math. Soc. 91, 459–482 (2005)

    Article  MathSciNet  Google Scholar 

  31. Cîrstea, F., R\(\breve{a}\)dulescu, V.: Boundary blow-up in nonlinear elliptic equations of Bieberbach-Rademacher type. Trans. Am. Math. Soc. 359, 3275–3286 (2007)

  32. Cîrstea, F., R\(\breve{a}\)dulescu, V.: Extremal singular solutions for degenerate logistic-type equations in anisotropic media. C. R. Acad. Sci. Paris, Ser. I 339, 119–124 (2004)

  33. Cîrstea, F., R\(\breve{a}\)dulescu, V.: Nonlinear problems with boundary blow-up: a Karamata regular variation theory approach. Asymptotic. Anal. 46, 275–298 (2006)

  34. Mohammed, A., R\(\breve{a}\)dulescu, V., Vitolo, A.: Blow-up solutions for fully nonlinear equations: Existence, asymptotic estimates and uniqueness. Adv. Nonlinear Anal. 9, 39–64 (2020)

  35. Gómez, J.L.: Optimal uniqueness theorems and exact blow-up rates of large solutions. J. Differ. Equ. 224, 385–439 (2006)

    Article  MathSciNet  Google Scholar 

  36. Dumont, S., Dupaigne, L., Goubet, O., R\(\breve{a}\)dulescu, V.: Back to the Keller–Osserman condition for boundary blow-up solutions. Adv. Nonlinear Stud. 7, 271–298 (2007)

  37. Huang, S., Li, W., Wang, M.: A unified asymptotic behavior of boundary blow-up solutions to elliptic equations. Differ. Integral Equ. 26, 675–692 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Huang, S., Tian, Q., Zhang, S., Xi, J., Fan, Z.: The exact blow-up rates of large solutions for semilinear elliptic equations. Nonlinear Anal. 73, 3489–3501 (2010)

    Article  MathSciNet  Google Scholar 

  39. Zhang, X., Feng, M.: Boundary blow-up solutions to the \(k\)-Hessian equation with singular weights. Nonlinear Anal. 167, 51–66 (2018)

    Article  MathSciNet  Google Scholar 

  40. Zhang, X., Feng, M.: Boundary blow-up solutions to the \(k\)-Hessian equation with a weakly superlinear nonlinearity. J. Math. Anal. Appl. 464, 456–472 (2018)

    Article  MathSciNet  Google Scholar 

  41. Zhang, Z.: Refined boundary behavior of the unique convex solution to a singular Dirichlet problem for the Monge–Ampère equation. Adv. Nonlinear Stud. 18, 289–302 (2018)

    Article  MathSciNet  Google Scholar 

  42. Zhang, Z.: Boundary behavior of large solutions to the Monge–Ampère equations with weights. J. Differ. Equ. 259, 2080–2100 (2015)

    Article  Google Scholar 

  43. Zhang, Z.: Large solutions to the Monge–Ampère equations with nonlinear gradient terms: existence and boundary behavior. J. Differ. Equ. 264, 263–296 (2018)

    Article  Google Scholar 

  44. Guan, B., Jian, H.: The Monge–Ampère equation with infinite boundary value. Pac. J. Math. 216, 77–94 (2004)

    Article  Google Scholar 

  45. Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second-order elliptic equations I. Monge–Ampère equations. Comm. Pure Appl. Math. 37, 369–402 (1984)

  46. Gladiali, F., Porru, G.: Estimates for explosive solutions to \(p\)-Laplace equations, Progress in Partial Differential Equations (Pont-á-Mousson 1997), Vol. 1, Pitman Res. Notes Math. Series, Longman 383, 117–127 (1998)

  47. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation, Encyclopedia Math. Appl. vol. 27, Cambridge University Press (1987)

  48. Seneta, R.: Regular Varying Functions, Lecture Notes in Math. vol. 508, Springer (1976)

Download references

Acknowledgements

This work is sponsored by Beijing Natural Science Foundation under Grant No. 1212003. Both the authors would like to express their gratitude to the referee for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemei Zhang.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We present here some basic facts of Karamata regular variation theory, for example, see references [47, 48].

Definition AP.1

A positive measurable function f defined on \([A,\infty )\), for some \(A>0\), is called regularly varying at infinity with index \(\rho \in \mathbb {R}\), written \(f \in RV_{\rho }\), if for all \(\xi >0\),

$$\begin{aligned} \lim _{s\rightarrow \infty } \frac{f(\xi s)}{f(s)}=\xi ^\rho . \end{aligned}$$
(7.1)

In particular, when \(\rho =0\), f is called slowly varying at infinity.

Clearly, if \(f \in RV_\rho \), then \(L(s)=\frac{f(s)}{s^\rho }\) is slowly varying at infinity.

Definition AP.\(1'\). A positive measurable function f defined on (0, a), for some constant \(a>0\), is called regularly varying at zero with index \(\rho \), written \(f \in RVZ_{\rho }\), if for each \(\xi >0\) and some \(\rho \in \mathbb {R}\),

$$\begin{aligned} \lim _{s\rightarrow 0^+} \frac{f(\xi s)}{f(s)}=\xi ^\rho . \end{aligned}$$

Clearly, if \(f \in RVZ_\rho \), then \(L(s)=\frac{f(s)}{s^\rho }\) is slowly varying at zero.

Definition AP.2

A positive measurable function f defined on \([A,\infty )\), for some \(A>0\), is called rapidly varying at infinity if for each \(\rho >1\)

$$\begin{aligned} \lim _{s\rightarrow \infty }\frac{f(s)}{s^\rho }=\infty , \end{aligned}$$
(7.2)

or, equivalently, if for each \(\xi >1\)

$$\begin{aligned} \lim _{s\rightarrow \infty }\frac{f(\xi s)}{f(s)}=\infty . \end{aligned}$$

Definition AP\(2'\). A positive measurable function f defined on (0, a), for some constant \(a>0\), is called rapidly varying at zero,

$$\begin{aligned}&if \lim _{s\rightarrow 0^+}f(s)=\infty ,and\ for\ each\ \rho>1,\lim _{s\rightarrow 0^+}f(s)s^\rho =\infty \\&or\ if \lim _{s\rightarrow 0^+}f(s)=0,and\ for\ each\ \rho >1,\lim _{s\rightarrow 0^+}f(s)s^{-\rho }=0 \end{aligned}$$

In the following we only state the properties of regularly (slowly or rapidly) varying at infinity.

Proposition AP.1

(Uniform convergence theorem). If \(f \in RV_\rho \), then (7.1) holds uniformly for \(\xi \in [c_1,c_2]\) with \(0<c_1<c_2\). Moreover, if \(\rho < 0\), then uniform convergence holds on intervals \((c_{1}, \infty ) \) with \(c_{1} > 0\); if \(\rho > 0\), then uniform convergence holds on intervals \((0, c_{2}] \) provided f is bounded on \((0, c_{2}]\) with \(c_{2} > 0\).

Proposition AP.2

(Representation theorem). A function L is slowly varying at infinity if and only if it may be written in the form

$$\begin{aligned} L(s)=\psi (s)exp\left( \int _{A_1}^s\frac{y(\tau )}{\tau }d\tau \right) ,s\ge A_1, \end{aligned}$$

for some \(A_1\ge A\), where the function \(\psi \) and y are continuous and for \(s \rightarrow \infty ,\ y(s)\rightarrow 0\) and \(\psi (s) \rightarrow c_0\), with \(c_0>0\).

We say that

$$\begin{aligned} \hat{L}(s)=c_0exp\left( \int _{A_1}^s\frac{y(\tau )}{\tau }d\tau \right) \end{aligned}$$

is normalized slowly varying at infinity and

$$\begin{aligned} f(s)=s^\rho \hat{L}(s),\ s\ge A_{1}, \end{aligned}$$

is normalized regularly varying at infinity with index \(\rho \) and write \(f\in NRV_\rho \).

Proposition AP.3

A function \(f\in RV_\rho \) belongs to \(NRV_\rho \) if and only if

$$\begin{aligned} f\in C^1[A_1,\infty ),\ for\ some\ A_1>0\ and\ \lim _{s\rightarrow \infty } \frac{sf'(s)}{f(s)}=\rho . \end{aligned}$$

Proposition AP.4

If the functions fgL are slowly varying at infinity,then

  1. (1)

    \(f^p\) for every \(p \in \mathbb {R}\), \(c_1f+c_2g(c_1,c_2 \ge 0)\),\(f\circ g(if\ g(s)\rightarrow 0\ as \ s \rightarrow 0^+)\) are also slowly varying at infinity.

  2. (2)

    For every \(\rho >0\) and \(s\rightarrow \infty \),

    $$\begin{aligned} s^{-\rho } L(s)\rightarrow 0,\ s^{\rho }L(s)\rightarrow \infty . \end{aligned}$$
  3. (3)

    For \(\rho \in \mathbb {R}\) and \(s\rightarrow \infty \),\(\frac{\ln (L(s))}{\ln s} \rightarrow 0\) and \(\frac{\ln (s^\rho L(s))}{\ln s} \rightarrow \rho \).

Proposition AP.5

If \(f_1\in RV_{\rho _1}, f_2\in RV_{\rho _2}\), then \(f_1f_2\in RV_{\rho _1+\rho _2}\) and \(f_1 \circ f_2 \in RV_{\rho _1 \rho _2}\).

Proposition AP.6

(Asymptotic behavior) If a function L is slowly varying at infinity, then for \(a\ge 0\) and \(t \rightarrow \infty \),

  1. (1)

    \(\int _a^{t}s^\rho L(s)ds \cong (1+\rho )^{-1}t^{1+\rho }L(t)\), for \(\rho >-1\);

  2. (2)

    \(\int _t^{\infty } s^\rho L(s)ds \cong (-1-\rho )^{-1}t^{1+\rho }L(t)\), for \(\rho <-1\).

Remark AP.1

The result of Proposition AP.6 remains true for \(\rho =-1\) in the sense that

$$\begin{aligned} \frac{\int _a^{t}s^{-1} L(s)ds}{L(t)}\rightarrow \infty \ \text {as}\ \ t\rightarrow \infty . \end{aligned}$$

When \(\rho =-1\), let \(z(s)=s^{-1}L(s)\).

Proposition AP.7

(Asymptotic behavior)(See Karamata’s Theorem 1.5.9b in [47].) If \(z\in RV_{-1}\) and \(\int _{s}^{\infty }z(\tau )d\tau <\infty , s>0,\) then \(\int _{s}^{\infty }z(\tau )d\tau \) is slowly varying at infinity and

$$\begin{aligned} \lim \limits _{s\rightarrow \infty }\frac{sz(s)}{\int _{s}^{\infty }z(\tau )d\tau }=0. \end{aligned}$$

By (1.6) we have

$$\begin{aligned} \Psi '(s)=-[(N+1-q)F(s)]^{-\frac{1}{N+1-q}},\ \Psi ''(s)=[(N+1-q)F(s)]^{-\frac{1}{N+1-q}-1}f(s). \end{aligned}$$

It follows that

$$\begin{aligned} -\frac{1}{\Psi '(s)}=[(N+1-q)F(s)]^{\frac{1}{N+1-q}}. \end{aligned}$$
(7.3)

By the definition of I(s) we have

$$\begin{aligned} I(s)=\frac{f(s)\Psi (s)}{[(N+1-q)F(s)]^{\frac{N-q}{N+1-q}}}. \end{aligned}$$

Lemma 7.1

Let \(0\le q<N+1.\) Suppose that f satisfies \(\mathbf{(f)}\) and (1.6). Assume that \(I_{0}, I_{\infty }\) exist. Then \( I_{0}\ge 1, I_{\infty }\ge 1.\)

Lemma 7.2

Let \(0\le q<N+1.\) Suppose that f satisfies \(\mathbf{(f)}\) and (1.6). Assume that \( I_{\infty }\) exists. We have

  1. (1)

    \(I_{\infty }\in (1,\infty )\) if and only if \(F\in NRV_{p+1}\) with \(p>N-q\);

  2. (2)

    If \(I_{\infty }=1\), then F is rapidly varying at infinity;

  3. (3)

    If \(F\in NRV_{N+1-q}\), then \(I_{\infty }=\infty \).

Proof

(1) Necessity. By Lemma 7.1, we see that

$$\begin{aligned} \begin{array}{ll} \lim \limits _{s\rightarrow \infty }\frac{-\frac{1}{\Psi '(s)}}{s(-\frac{1}{\Psi '(s)})'}=-\lim \limits _{s\rightarrow \infty }\frac{\frac{1}{\Psi '(s)}\Psi (s)}{s\frac{\Psi ''(s)}{(\Psi '(s))^2}\Psi (s)}=-\frac{1}{I_{\infty }}\lim \limits _{s\rightarrow \infty }\frac{\frac{\Psi (s)}{\Psi '(s)}}{s}\\ =-\frac{1}{I_{\infty }}\lim \limits _{s\rightarrow \infty }\frac{(\Psi '(s))^2-\Psi (s)\Psi ''(s)}{(\Psi '(s))^2}=\frac{I_{\infty }-1}{I_{\infty }}. \end{array} \end{aligned}$$
(7.4)

By Proposition AP.3 we have \(-\frac{1}{\Psi '(s)}\in NRV_{I_{\infty }/(I_{\infty }-1)}.\) By (7.3) \(F\in NRV_{(N+1-q)I_{\infty }/(I_{\infty }-1)}\). Denote \((N+1-q)I_{\infty }/(I_{\infty }-1)\) by \(p+1\), then \(p+1>N+1-q\), i.e. \(p>N-q\).

Sufficiency. If \(F\in NRV_{p+1}\) with \(p>N-q\), then \(-\frac{1}{\Psi '}\in NRV_{(p+1)/(N+1-q)}\), and

$$\begin{aligned} \lim \limits _{s\rightarrow \infty }\frac{s(-\frac{1}{\Psi '(s)})'}{-\frac{1}{\Psi '(s)}}=\frac{p+1}{N+1-q},\ \ -\frac{1}{\Psi '(s)}=s^{\frac{p+1}{N+1-q}}\hat{L}(s), \ \ \forall s\ge S_{0}, \end{aligned}$$

where \( S_{0}\) is large enough, \(\hat{L}(s)\) is normalized slowly varying at infinity. By Proposition AP.6,

$$\begin{aligned} \begin{array}{ll} \lim \limits _{s\rightarrow \infty }(-\frac{1}{\Psi '(s)})'\Psi (s)\\ =\lim \limits _{s\rightarrow \infty }\frac{s(-\frac{1}{\Psi '(s)})'}{-\frac{1}{\Psi '(s)}}\lim \limits _{s\rightarrow \infty }\frac{-\frac{1}{\Psi '(s)}}{s}\Psi (s)\\ =\frac{p+1}{N+1-q}\lim \limits _{s\rightarrow \infty }s^{\frac{p-N}{N+1-q}}\hat{L}(s)\int _{s}^{+\infty }\tau ^{-\frac{p+1}{N+1-q}}(\hat{L}(\tau ))^{-1}d\tau \\ =\frac{p+1}{N+1-q}\lim \limits _{s\rightarrow \infty }s^{\frac{p-N}{N+1-q}}\hat{L}(s)(\frac{p+1}{N+1-q}-1)^{-1}s^{1-\frac{p+1}{N+1-q}}(\hat{L}(s))^{-1}. \end{array} \end{aligned}$$

It follows that \(I_{\infty }=\frac{p+1}{p+q-N}>1\).

In this case,

$$\begin{aligned} F(s)=s^{p+1}\hat{L}(s), \forall s\ge S_{0}. \end{aligned}$$

Then by Proposition AP.2 we obtain

$$\begin{aligned} f(s)=s^p[(p+1)+y(s)]\hat{L}(s)\in RV_{p}, \forall s\ge S_{0}, \end{aligned}$$

where \( \lim \limits _{s\rightarrow \infty }y(s)=0\).

(2) If \(I_{\infty }=1\), by (7.4) we see

$$\begin{aligned} \lim \limits _{s\rightarrow \infty }\frac{s(-\frac{1}{\Psi '(s)})'}{-\frac{1}{\Psi '(s)}}=\infty . \end{aligned}$$

Let

$$\begin{aligned} \frac{s(-\frac{1}{\Psi '(s)})'}{-\frac{1}{\Psi '(s)}}:=y(s),\forall s>0, \end{aligned}$$

i.e.

$$\begin{aligned} \frac{(-\frac{1}{\Psi '(s)})'}{-\frac{1}{\Psi '(s)}}=\frac{y(s)}{s},\forall s>0. \end{aligned}$$
(7.5)

Integrating (7.5) from \(S_{0}\) to s, we have

$$\begin{aligned} -\frac{1}{\Psi '(s)}={\bar{c}}_{1}\text {exp}\ \bigg (\int _{S_{0}}^{s}\frac{y(\tau )}{\tau }d\tau \bigg ),\ s>S_{0}, \end{aligned}$$

where \({\bar{c}}_{1}=-\frac{1}{\Psi '(S_{0})}.\)

Since \(\lim \limits _{s\rightarrow \infty }y(s)=\infty ,\) we have that for each \(\xi >1,\)

$$\begin{aligned} -\frac{1}{\Psi '(\xi s)}\bigg /-\frac{1}{\Psi '(s)}=\text {exp}\ \bigg (\int _{s}^{\xi s} \frac{y(\tau )}{\tau }d\tau \bigg )=\text {exp}\ \bigg (\int _{1}^{\xi }\frac{y(sv)}{v}dv\bigg )\rightarrow \infty \ \text {as}\ s\rightarrow \infty . \end{aligned}$$
(7.6)

Then \(-\frac{1}{\Psi '(s)}\) is rapidly varying at infinity. It follows that F is rapidly varying at infinity.

(3) If \(F\in NRV_{N+1-q}\), by Proposition AP.3 we see that \(-\frac{1}{\Psi '(s)}\in NRV_{1}, -\Psi '(s)\in NRV_{-1} \). Then

$$\begin{aligned} \lim \limits _{s\rightarrow \infty }\frac{s(-\frac{1}{\Psi '(s)})'}{-\frac{1}{\Psi '(s)}}=1. \end{aligned}$$

It follows from Proposition AP.7 that

$$\begin{aligned} \lim \limits _{s\rightarrow \infty }\frac{s\Psi '(s)}{\int _{s}^{\infty }\Psi '(\tau )d\tau }=0. \end{aligned}$$

Thus

$$\begin{aligned} I_{\infty }=\lim \limits _{s\rightarrow \infty }\frac{\Psi ''(s)\Psi (s)}{(\Psi '(s))^2} =\lim \limits _{s\rightarrow \infty }\frac{s(\frac{1}{\Psi '(s)})'}{\frac{1}{\Psi '(s)}} \frac{\int _{s}^{\infty }(-\Psi '(\tau ))d\tau }{-s\Psi '(s)}=\infty . \ \ \ \end{aligned}$$

\(\square \)

Similarly we have

Lemma 7.3

Let \(0\le q<N+1.\) Suppose that f satisfies \(\mathbf{(f)}\) and (1.6). Assume that \(I_{0}\) exists. We have

  1. (1)

    \(I_{0}\in (1,\infty )\) if and only if \(F\in NRVZ_{p+1}\) with \(p>N-q\);

  2. (2)

    If \(I_{0}=1\), then F is rapidly varying at zero;

  3. (3)

    If \(F\in NRVZ_{N+1-q}\), then \(I_{0}=\infty \).

Lemma 7.4

Let \(0\le q<N.\) Suppose f be a positive measurable function defined on \((0,a_{1})\) for some \(a_{1}>0\) and \(\lim \limits _{s\rightarrow 0^{+}}f(s)=0\).

  1. (1)

    If f is rapidly varying at 0 or \(f\in RVZ_{p}\) with \(p>N-q\), then (1.7) holds;

  2. (2)

    If f is slow varying at 0 or \(f\in RVZ_{p}\) with \(p<N-q\), then (1.7) does not hold.

Proof

(1) If f is rapidly varying at 0, then \(\lim \limits _{s\rightarrow 0^+}\frac{f(s)}{s^{N-q}}=0.\) Then there exists \(\delta >0\) such that

$$\begin{aligned} f(s)<s^{N-q}, \ \forall \ 0<s<\delta . \end{aligned}$$

It follows that

$$\begin{aligned} F(s)<\frac{1}{N+1-q}s^{N+1-q}, \forall 0<s<\delta . \end{aligned}$$

We can see

$$\begin{aligned} \int _{0}^{\delta }F(s)^{-\frac{1}{N+1-q}}ds=\infty . \end{aligned}$$

Then (1.7) holds.

If \(f\in RVZ_{p}\) with \(p>N-q\), then \(F\in RVZ_{p+1}\) with \(p+1>N+1-q\). It follows that \(F(s)=s^{p+1}L(s)\), where L(s) is slowly varying at 0. By Proposition AP.6 we have

$$\begin{aligned} \begin{array}{l} \int _{t}^{\infty }[(N+1-q)F(s)]^{-\frac{1}{N+1-q}}ds=\int _{t}^{\infty }(N+1-q)^{-\frac{1}{N+1-q}}s^{-\frac{p+1}{N+1-q}}(L(s))^{-\frac{1}{N+1-q}}ds\\ =(N+1-q)^{-\frac{1}{N+1-q}}(\frac{q+p-N}{N+1-q})^{-1}t^{\frac{N-q-p}{N+1-q}}(L(t))^{-\frac{1}{N+1-q}}\rightarrow \infty \ \text {as}\ t\rightarrow 0. \end{array} \end{aligned}$$

Then (1.7) holds.

(2) It is similar to the proof above. So we omit it. \(\square \)

Lemma 7.5

  1. (1)

    Suppose that \(f\in RVZ_p,p>N-q\) or f is rapidly varying at zero. Then

    $$\begin{aligned} \int _{0^+}[f(\tau )]^{-1/N-q}d\tau =\infty \ \text {and}\ \int _{0^+} [F(\tau )]^{-1/(N+1-q)}d\tau =\infty . \end{aligned}$$
  2. (2)

    Suppose that \(f\in RVZ_p(p<N-q)\) or f is slowly varying at zero. Then

    $$\begin{aligned} \int _{0^+} [f(\tau )]^{-1/N-q}d\tau<\infty \ \text {and}\ \int _{0^+} [F(\tau )]^{-1/(N+1-q)}d\tau <\infty . \end{aligned}$$
  3. (3)

    Suppose that \(f\in RVZ_{N-q}\). Then

    $$\begin{aligned} \int _{0^+} [f(\tau )]^{-1/N-q}d\tau =\infty \ \text {implies}\ \int _{0^+} [F(\tau )]^{-1/(N+1-q)}d\tau =\infty , \end{aligned}$$

    however, it is not applicable in reverse.

Proof

Letting \(f\in RVZ_p(p> N-q)\), then

$$\begin{aligned} F\in RVZ_{p+1}, f(s)=s^pL(s),F(s)=s^{p+1}L(s), \end{aligned}$$

where L(s) is slowly varying at infinity. From Proposition AP.6 we derive

$$\begin{aligned} \int _{0^+} [F(\tau )]^{-1/(N+1-q)}d\tau =\infty ,\int _{0^+}[f(\tau )]^{-1/(N-q)}d\tau =\infty . \end{aligned}$$

Suppose that f is rapidly varying at infinity. Then for \(\rho >N-q\) we have

$$\begin{aligned} \lim \limits _{s\rightarrow 0^+}\frac{f(s)}{s^{\rho }}=0. \end{aligned}$$

It so follows that there exist \(\varepsilon>0,\ S>0\) so that \(f(s)<\varepsilon s^{\rho }\) for \(0<s<S\). This shows that

$$\begin{aligned} f(s)^{-\frac{1}{N-q}}>[\varepsilon s^{\rho }]^{-\frac{1}{N-q}}. \end{aligned}$$

By integrating from \(\epsilon \) to \(t\ (t<S)\), we derive

$$\begin{aligned} \int _{\epsilon }^{t}[f(\tau )]^{-1/(N-q)}d\tau \rightarrow \infty \ (\epsilon \rightarrow 0). \end{aligned}$$

Similarly one can prove that

$$\begin{aligned} \int _{0^{+}} [F(\tau )]^{-1/(N+1-q)}d\tau =\infty . \end{aligned}$$

For \(f\in RVZ_p\ (p<N-q)\), from Proposition AP.6, we get

$$\begin{aligned} \int _{0^+}[F(\tau )]^{-1/(N+1-q)}d\tau<\infty ,\ \ \int _{0^+} [f(\tau )]^{-1/(N-q)}d\tau <\infty . \end{aligned}$$

On the other hand, if f is slowly varying at infinity, then by Proposition AP.4, we have for \(\rho <N-q\)

$$\begin{aligned} \lim \limits _{s\rightarrow 0^+}\frac{f(s)}{s^\rho }=\infty . \end{aligned}$$

It hence follows that there exist \(M>0,\ S>0\) so that \(f(s)>Ms^\rho \) for \(0<s<S\), which shows that \(f(s)^{-\frac{1}{N-q}}<[Ms^\rho ]^{-\frac{1}{N-q}}\). By integrating from 0 to \(t\ (t>S)\), we derive that

$$\begin{aligned} \int _{0}^t [f(\tau )]^{-1/(N-q)}d\tau <\infty . \end{aligned}$$

Similarly one can get

$$\begin{aligned} \int _{0}^t [F(\tau )]^{-1/(N+1-q)}d\tau <\infty . \end{aligned}$$

Assume that

$$\begin{aligned} f(s)=(N+1-q)s^{N-q}L(s)+s^{N+1-q}L'(s) \end{aligned}$$

satisfying

$$\begin{aligned} \int _{0^{+}}[f(\tau )]^{-1/(N-q)}d\tau =\infty , \end{aligned}$$

where \(L(s)\in C^1(0,a)(a>0)\) is normalised slowly varying at infinity. Then \(f\in RVZ_{N-q}\) and \(F(s)=s^{N+1-q}L(s)\).

Letting \(\lim \limits _{s\rightarrow 0^+}L(s)=c\ge 0\), then we get that

$$\begin{aligned} \int _{0^+} [F(\tau )]^{-1/(N+1-q)}d\tau =\int _{0^+}\tau ^{-1}(L(\tau ))^{-1}d\tau >M\int _{0^+}\tau ^{-1}d\tau =\infty . \end{aligned}$$

Letting \(\lim \limits _{s\rightarrow 0^+}L(s)=\infty \), then we obtain that

$$\begin{aligned} \lim \limits _{s\rightarrow 0^+}\frac{[F(s)]^{\frac{N-q}{N+1-q}}}{f(s)}&=\lim \limits _{s\rightarrow 0^+}\frac{[L(s)]^{\frac{N-q}{N+1-q}}}{(N+1-q)L(s)+sL'(s)}\\&=\lim \limits _{s\rightarrow 0^+}\frac{1}{(N+1-q)[L(s)]^{\frac{1}{N+1-q}}+\frac{sL'(s)}{[L(s)]^{\frac{N-q}{N+1-q}}}}. \end{aligned}$$

From the definition of normalised slowly varying function, we derive that

$$\begin{aligned} L(s)=c_0exp\left( \int _{A_1}^s\frac{y(\tau )}{\tau }d\tau \right) . \end{aligned}$$

It so yields that

$$\begin{aligned} \lim \limits _{s\rightarrow 0^+}\frac{sL'(s)}{[L(s)]^{\frac{N-q}{N+1-q}}}=0. \end{aligned}$$

We thus derive

$$\begin{aligned} \lim \limits _{s\rightarrow 0^+}\frac{[F(s)]^{\frac{N-q}{N+1-q}}}{f(s)}=0. \end{aligned}$$

It hence follows that \(\int _{0^+} [F(\tau )]^{-1/(N+1-q)}d\tau =\infty .\)

Conversely, letting

$$\begin{aligned} F(s)=s^{N+1-q}(\ln \frac{1}{s})^\beta ,N-q<\beta \le N+1-q, \end{aligned}$$

then by Remark AP.1 we get that

$$\begin{aligned} \int _{0^+} [F(\tau )]^{-1/(N+1-q)}d\tau =\infty ,\int _{0^+} [f(\tau )]^{-1/(N-q)}d\tau <\infty . \end{aligned}$$

The proof of Lemma 7.5 is finished. \(\square \)

Remark AP.2

From Lemma 7.5 we see that (1.7) is a weaker condition than (1.8) in this kind of classification. But we can not conclude whether or not it is true for arbitrary f.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Feng, M. Blow-up solutions to the Monge–Ampère equation with a gradient term: sharp conditions for the existence and asymptotic estimates. Calc. Var. 61, 208 (2022). https://doi.org/10.1007/s00526-022-02315-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02315-3

Mathematics Subject Classification

Navigation