Skip to main content
Log in

On the Monge–Ampère equation with boundary blow-up: existence, uniqueness and asymptotics

  • Original Article
  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the Monge–Ampère equation det D 2 u = b(x)f(u) > 0 in Ω, subject to the singular boundary condition u = ∞ on ∂Ω. We assume that \(b\in C^\infty(\overline{\Omega})\) is positive in Ω and non-negative on ∂Ω. Under suitable conditions on f, we establish the existence of positive strictly convex solutions if Ω is a smooth strictly convex, bounded domain in \({\mathbb R}^N\) with N ≥ 2. We give asymptotic estimates of the behaviour of such solutions near ∂Ω and a uniqueness result when the variation of f at ∞ is regular of index q greater than N (that is, \(\lim_{u\to \infty} f(\lambda u)/f(u)=\lambda^q\) , for every λ > 0). Using regular variation theory, we treat both cases: b > 0 on ∂Ω and \(b\equiv 0\) on ∂Ω.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bandle C. and Marcus M. (1992). Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior. J. Anal. Math. 58: 9–24

    Article  MATH  MathSciNet  Google Scholar 

  2. Bandle C. and Marcus M. (1995). Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary. Ann. Inst. H. Poincaré Anal. Non Linéaire 12: 155–171

    MATH  MathSciNet  Google Scholar 

  3. Bieberbach L. (1916). Δu = e u und die automorphen Funktionen. Math. Ann. 77: 173–212

    Article  MathSciNet  Google Scholar 

  4. Bingham N.H., Goldie C.M. and Teugels J.L. (1987). Regular Variation. Encyclopedia of Mathematics and its Applications, vol. 27. Cambridge University Press, Cambridge

    Google Scholar 

  5. Caffarelli L., Nirenberg L. and Spruck J. (1984). The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge–Ampère equation. Comm. Pure Appl. Math. 37: 369–402

    Article  MATH  MathSciNet  Google Scholar 

  6. Cheng S.Y. and Yau S.-T. (1980). On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation. Comm. Pure Appl. Math. 33: 507–544

    Article  MATH  MathSciNet  Google Scholar 

  7. Cheng, S.Y., Yau, S.-T.: The real Monge–Ampère equation and affine flat structures. In: Chern, S.S., Wu, W. (eds.) Proceedings of 1980 Beijing Symposium on Differential Geometry and Differential Equations, vol. 1, pp. 339–370, Beijing. Science Press, New York (1982)

  8. Chou K.-S. and Wang X.J. (2001). A variational theory of the Hessian equation. Comm. Pure Appl. Math. 54: 1029–1064

    Article  MATH  MathSciNet  Google Scholar 

  9. Cîrstea, F.-C.: Elliptic equations with competing rapidly varying nonlinearities and boundary blow-up (submitted), Preprint available online at http://www.maths.anu.edu.au/∼cirstea

  10. Cîrstea F.-C. and Du Y. (2005). General uniqueness results and variation speed for blow-up solutions of elliptic equations. Proc. Lond. Math. Soc. 91: 459–482

    Article  MATH  Google Scholar 

  11. Cîrstea F.-C. and Rădulescu V. (2002). Uniqueness of the blow-up boundary solution of logistic equations with absorption. C. R. Math. Acad. Sci. Paris 335: 447–452

    MATH  MathSciNet  Google Scholar 

  12. Cîrstea F.-C. and Radulescu V. (2004). Extremal singular solutions for degenerate logistic-type equations in anisotropic media. C. R. Math. Acad. Sci. Paris 339: 119–124

    MATH  MathSciNet  Google Scholar 

  13. Cîrstea F.-C. and Rădulescu V. (2006). Nonlinear problems with boundary blow-up: a Karamata regular variation theory approach. Asymptot. Anal. 46: 275–298

    MATH  MathSciNet  Google Scholar 

  14. Colesanti A., Salani P. and Francini E. (2000). Convexity and asymptotic estimates for large solutions of Hessian equations. Differ. Integral Equ. 13: 1459–1472

    MATH  MathSciNet  Google Scholar 

  15. de Haan, L.: (1970) On Regular Variation and its Application to the Weak Convergence of Sample Extremes, University of Amsterdam/Math. Centre Tract 32, Amsterdam

  16. Du Y. and Huang Q. (1999). Blow-up solutions for a class of semilinear elliptic and parabolic equations. SIAM J. Math. Anal. 31: 1–18

    Article  MATH  MathSciNet  Google Scholar 

  17. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)

  18. Guan B. (1994). The Dirichlet problem for a class of fully nonlinear elliptic equations. Comm. Partial Differ. Equ. 19: 399–416

    Article  MATH  Google Scholar 

  19. Guan B. and Jian H.-Y. (2004). The Monge–Ampère equation with infinite boundary value. Pac. J. Math. 216: 77–94

    Article  MATH  MathSciNet  Google Scholar 

  20. Karamata J. (1930). Sur un mode de croissance régulière des fonctions. Mathematica (Cluj) 4: 38–53

    MATH  Google Scholar 

  21. Karamata J. (1933). Sur un mode de croissance régulière. Théorèmes fondamentaux. Bull. Soc. Math. France 61: 55–62

    MATH  MathSciNet  Google Scholar 

  22. Keller J.B. (1957). On solutions of Δu = f(u). Comm. Pure Appl. Math. 10: 503–510

    Article  MATH  MathSciNet  Google Scholar 

  23. Lazer A.C. and McKenna P.J. (1996). On singular boundary value problems for the Monge–Ampère operator. J. Math. Anal. Appl. 197: 341–362

    Article  MATH  MathSciNet  Google Scholar 

  24. Lions P.-L. (1985). Sur les équations de Monge–Ampère. (French) [On Monge–Ampère equations]. Arch. Ration. Mech. Anal. 89: 93–122

    Article  MATH  Google Scholar 

  25. Lions P.-L. (1985). Two remarks on Monge–Ampère equations. Ann. Mat. Pura Appl. 142: 263–275

    Article  MATH  MathSciNet  Google Scholar 

  26. Loewner, C. Nirenberg, L.: Partial differential equations invariant under conformal or projective transformations. In: Ahlfors, L.V., et al. (eds.) Contributions to Analysis, pp. 245–272. Academic Press, New York (1974)

  27. Marcus M. and Véron L. (1997). Uniqueness and asymptotic behaviour of solutions with boundary blow-up for a class of nonlinear elliptic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 14: 237–275

    Article  MATH  Google Scholar 

  28. Marcus M. and Véron L. (2003). Existence and uniqueness results for large solutions of general nonlinear elliptic equations. J. Evol. Equ. 3: 637–652

    Article  MATH  MathSciNet  Google Scholar 

  29. Matero J. (1996). The Bieberbach–Rademacher problem for the Monge–Ampère operator. Manuscripta Math. 91: 379–391

    Article  MATH  MathSciNet  Google Scholar 

  30. Osserman R. (1957). On the inequality Δu ≥ f(u). Pac. J. Math. 7: 1641–1647

    MATH  MathSciNet  Google Scholar 

  31. Pogorelov A.V. (1978). The multidimensional Minkovski problem. Wiley, New York

    Google Scholar 

  32. Rademacher, H.: Einige besondere probleme partieller Differentialgleichungen. In: Die Differential und Integralgleichungen der Mechanik und Physik, I, Rosenberg, New York, 2nd edn, pp. 838–845 (1943)

  33. Resnick S.I. (1987). Extreme Values, Regular Variation and Point Processes. Springer, New York

    MATH  Google Scholar 

  34. Salani P. (1998). Boundary blow-up problems for Hessian equations. Manuscripta Math. 96: 281–294

    Article  MATH  MathSciNet  Google Scholar 

  35. Seneta, E.: (1976) Regularly varying functions. Lecture Notes in Mathematics, vol. 508. Springer, Berlin

  36. Takimoto K. (2006). Solution to the boundary blowup problem for k-curvature equation. Calc. Var. Partial Differ. Equ. 26: 357–377

    Article  MATH  MathSciNet  Google Scholar 

  37. Trudinger N.S. (1983). Fully nonlinear, uniformly elliptic equations under natural structure conditions. Trans. Am. Math. Soc. 278: 751–769

    Article  MATH  MathSciNet  Google Scholar 

  38. Trudinger N.S. (1995). On the Dirichlet problem for Hessian equations. Acta Math. 175: 151–164

    Article  MATH  MathSciNet  Google Scholar 

  39. Trudinger N.S. (1997). Weak solutions of Hessian equations. Comm. Partial Differ. Equ. 22: 1251–1261

    Article  MATH  MathSciNet  Google Scholar 

  40. Trudinger N.S. and Urbas J. (1983). The Dirichlet problem for the equation of prescribed Gauss curvature. Bull. Aust. Math. Soc. 28: 217–231

    MATH  MathSciNet  Google Scholar 

  41. Tso K. (1990). On a real Monge–Ampère functional. Invent. Math. 101: 425–448

    Article  MATH  MathSciNet  Google Scholar 

  42. Wang X.J. (1994). A class of fully nonlinear elliptic equations and related functionals. Indiana Univ. Math. J 43: 25–54

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florica Corina Cîrstea.

Additional information

Florica Corina Cîrstea’s research is supported by the Australian Research Council. F. Cîrstea was also supported by the Programma di Scambi Internazionali dell’Università degli Studi di Napoli “Federico II”. She is grateful for the hospitality and support during her research at Università degli Studi di Napoli “Federico II” in January–February 2006.

Cristina Trombetti is grateful for the hospitality and support during her research at the Department of Mathematics of the Australian National University in July–August 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cîrstea, F.C., Trombetti, C. On the Monge–Ampère equation with boundary blow-up: existence, uniqueness and asymptotics. Calc. Var. 31, 167–186 (2008). https://doi.org/10.1007/s00526-007-0108-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-007-0108-7

Keywords

Navigation