Skip to main content
Log in

Up to the boundary gradient estimates for viscosity solutions to nonlinear free boundary problems with unbounded measurable ingredients

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we prove up to the boundary gradient estimates for viscosity solutions to inhomogeneous nonlinear Free Boundary Problems (FBP) governed by fully nonlinear and quasilinear elliptic equations with unbounded measurable ingredients. Here, we build upon our previous results in [9] to construct Inhomogeneous Pucci Barriers (IPB) for the Pucci extremal equations with unbounded coefficients. Using these barriers, we obtain a version of a boundary growth type lemma for inhomogeneous nonlinear equations that may be of independent interest. In a certain way, this lemma detects the expansion of the level sets of supersolutions from the boundary to the interior. The use of this boundary growth type lemma together with the geometry of IPB bridge the interchanging information between the free boundary condition and Dirichlet boundary data on the free and fixed boundary respectively. This produces an estimate on the trace of solutions to FBP along the fixed boundary. This way, control of such solutions (up to the boundary) by the distance to the negative phase is obtained. Finally, this distance control combined with the PDE boundary gradient estimates render our final result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. More precisely,  \(u_{\nu }^{+}\) and \(u_{\nu }^{-}\) here are understood in the weak sense, since there is no apriori regularity assumption on the smoothness of the free boundary F(u) and thus the unit normal vector \(\nu \) to F(u) may not exist apriori. The coefficients of the asymptotic development of u near F(u) are the (weak) substitutes that mimic the roles of \(u_{\nu }^{+}, u_{\nu }^{-}\) on F(u). This is explained in chapters 11 and 12 of the book of L. Caffarelli and S. Salsa [16] and in the Appendix of [15].

  2. Clearly, we can always assume that \(\Upsilon _{0}\in (0,1/2)\) replacing it by \( \min \{\Upsilon _{0},1/2\}\) if this becomes necessary.

References

  1. Adams, R.A., Fournier, J.F.: Sobolev Spaces. Pure and Applied Mathematics (Amsterdam), vol. 140, 2nd edn. Elsevier/Academic Press, Amsterdam (2003)

    MATH  Google Scholar 

  2. Alt, H.W., Caffarelli, L.A.: Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325, 105–144 (1981)

    MathSciNet  MATH  Google Scholar 

  3. Alt, H.W., Caffarelli, L.A., Friedman, A.: Variational problems with two phases and their free boundaries. Trans. Amer. Math. Soc. 282(2), 431–461 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Batchelor, G.K.: On steady laminar flow with closed streamlines at large Reynolds number. J. Fluid Mech. 1, 177–190 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berestycki, H., Caffarelli, L. A., Nirenberg, L.: Uniform estimates for regularization of free boundary problems. Analysis and partial differential equations, 567-619, Lecture Notes in Pure and Appl. Math., 122, Dekker, New York, (1990)

  6. Braga, J. Ederson M., Moreira, D.: up to the boundary gradient estimates for nonlinear singular perturbation problems with unbounded measurable ingredients. In preparation

  7. Braga, J. Ederson M.: Free boundary theory for non-homogeneous fully nonlinear equations with unbounded ingredients. (submitted)

  8. Braga, J. Ederson M, Moreira, D., Wang, L.: Inhomogeneous Hopf-Oleĭnik lemma and applications. Part IV: Sharp Krylov boundary gradient estimates for solutions to fully nonlinear differential inequalities with unbounded coefficients and \(C^{1,Dini}\) boundary data. https://arxiv.org/pdf/1608.02352.pdf

  9. Braga, J. Ederson M., Moreira, Diego: Inhomogeneous Hopf-Oleĭnik lemma and regularity of semiconvex supersolutions via new barriers for the Pucci extremal operators. Adv. Math. 334, 184–242 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Braga, J. Ederson M., Gomes, Diego E. M., Moreira, Diego, Wang, Lihe: Krylov’s boundary gradient type estimates for solutions to fully nonlinear differential inequalities with quadratic growth on the gradient. SIAM J. Math. Anal. 52(5), 4469–4505 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Braga, J. Ederson M., Leitão, Raimundo A., Oliveira, J. Erivamberto L.: Free boundary theory for singular/degenerate nonlinear equations with right hand side: a non-variational approach. Calc. Var. Part. Differ. Equ. 59(2), 29 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brezis, H.: Functional analysis. Sobolev spaces and partial differential equations. Universitext. Springer, New York (2011)

    Book  MATH  Google Scholar 

  13. Caffarelli, L.A.: A Harnack inequality approach to the regularity of free boundaries. I. Lipschitz free boundaries are \(C^{1,\alpha }\). Rev. Mat. Iberoamericana 3(2), 139–162 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Caffarelli, L.A.: A Harnack inequality approach to the regularity of free boundaries. III. Existence theory, compactness, and dependence on X. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15(4), 583–602 (1988)

    MathSciNet  MATH  Google Scholar 

  15. Caffarelli, L.A.: A Harnack inequality approach to the regularity of free boundaries. II. Flat free boundaries are Lipschitz. Comm. Pure Appl. Math. 42(1), 55–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Caffarelli, L.A., Salsa, S.: A geometric approach to free boundary problems. Graduate Studies in Mathematics. American Mathematical Society, vol. 68, p. x+270. Providence, RI (2005)

    MATH  Google Scholar 

  17. Caffarelli, L.A., Crandall, M.G., Kocan, M., Swiȩch, A.: On viscosity solutions of fully nonlinear equations with measurable ingredients. Comm. Pure Appl. Math. 49(4), 365–397 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Caffarelli, L.A., Jerison, D., Kenig, C.E.: Some new monotonicity theorems with applications to free boundary problems. Ann. of Math. (2) 155(2), 369–404 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Caffarelli, L., De Silva, D., Savin, O.: Two-phase anisotropic free boundary problems and applications to the Bellman equation in 2D. Arch. Ration. Mech. Anal. 228(2), 477–493 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cerutti, M.C., Ferrari, F., Salsa, S.: Two-phase problems for linear elliptic operators with variable coefficients: Lipschitz free boundaries are \(C^{1,\gamma }\). Arch. Ration. Mech. Anal. 171(3), 329–348 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chang-Lara, H., Savin, O.: Boundary regularity for the free boundary in the one-phase problem. New developments in the analysis of nonlocal operators,. Contemp. Math., 723, Amer. Math. Soc., pp. 149–165. Providence, RI (2019)

  22. Crandall M. G., Kocan, M., Soravia, P., Świech, A.: On the equivalence of various weak notions of solutions of elliptic PDEs with measurable ingredients, Progress in elliptic and parabolic partial differential equations (Capri), 136 - 162 (1994)

  23. Da Silva, João Vitor., Nornberg, Gabrielle: Regularity estimates for fully nonlinear elliptic PDEs with general Hamiltonian terms and unbounded ingredients. Calc. Var. Part. Differ. Equ. 60(6), 1–40 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. De Silva, D., Savin, O.: Global solutions to nonlinear two-phase free boundary problems. (to appear Communications on Pure and Applied Mathematics)

  25. De Silva, D.: Free boundary regularity for a problem with right hand side. Interfaces Free Bound. 13(2), 223–238 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. De Silva, D., Savin, O.: Lipschitz regularity of solutions to two-phase free boundary problems. Int. Math. Res. Not. IMRN 7, 2204–2222 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. De Silva, D., Ferrari, F., Salsa, S.: On two phase free boundary problems governed by elliptic equations with distributed sources. Discrete Contin. Dyn. Syst. Ser. S 7(4), 673–693 (2014)

    MathSciNet  MATH  Google Scholar 

  28. De Silva, D., Ferrari, F., Salsa, S.: Two-phase problems with distributed sources: regularity of the free boundary. Anal. PDE 7(2), 267–310 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. De Silva, D., Ferrari, F., Salsa, S.: Free boundary regularity for fully nonlinear non-homogeneous two-phase problems. J. Math. Pures Appl. (9) 103(3), 658–694 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. De Silva, D., Ferrari, F., Salsa, S.: Perron’s solutions for two-phase free boundary problems with distributed sources. Nonlinear Anal. 121, 382–402 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. De Silva, D., Ferrari, F., Salsa, S.: Regularity of the free boundary for two-phase problems governed by divergence form equations and applications. Nonlinear Anal. 138, 3–30 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. De Silva, D., Ferrari, F., Salsa, S.: Two-phase free boundary problems: from existence to smoothness. Adv. Nonlinear Stud. 17(2), 369–385 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. De Silva, D., Ferrari, F., Salsa, S.: Regularity of higher order in two-phase free boundary problems. Trans. Amer. Math. Soc. 371(5), 3691–3720 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Dipierro, S., Karakhanyan, A.L.: Stratification of free boundary points for a two-phase variational problem. Adv. Math. 328, 40–81 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Donaldson, T.K., Trudinger, N.S.: Orlicz-Sobolev spaces and imbedding theorems. J. Functional Analysis 8, 52–75 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  36. Elcrat, A., Miller, K.: Variational formulas on Lipschitz domains. Trans. Amer. Math. Soc. 347(7), 2669–2678 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Feldman, M.: Regularity for nonisotropic two-phase problems with Lipschitz free boundaries. Differ. Int. Equ. 10(6), 1171–1179 (1997)

    MathSciNet  MATH  Google Scholar 

  38. Feldman, M.: Regularity of Lipschitz free boundaries in two-phase problems for fully nonlinear elliptic equations. Indiana Univ. Math. J. 50(3), 1171–1200 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ferrari, F.: Two-phase problems for a class of fully nonlinear elliptic operators. Lipschitz free boundaries are \(C^{1\gamma }\). Amer. J. Math. 128(3), 541–571 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ferrari, F., Salsa, S.: Regularity of the free boundary in two-phase problems for linear elliptic operators. Adv. Math. 214(1), 288–322 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Friedman, A., Liu, Y.: A free boundary problem arising in magnetohydrodynamic system. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22(3), 375–448 (1995)

    MathSciNet  MATH  Google Scholar 

  42. Gilbarg, D., Trudinger, N. S.: Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin. xiv+517 pp. (2001) ISBN: 3-540-41160-7

  43. Giusti, E.: Direct Methods in the Calculus of Variations, p. viii+403. World Scientific Publishing Co. Inc., River Edge, NJ (2003)

    Book  MATH  Google Scholar 

  44. Gravina, Giovanni, Leoni, Giovanni: On the behavior of the free boundary for a one-phase Bernoulli problem with mixed boundary conditions. Commun. Pure Appl. Anal. 19(10), 4853–4878 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  45. Gurevich, A.: Boundary regularity for free boundary problems. Comm. Pure Appl. Math. 52(3), 363–403 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  46. Hile, G.N., Stanoyevitch, A.: Gradient bounds for harmonic functions Lipschitz on the boundary. Begehr special issue. Appl. Anal. 73(1–2), 101–113 (1999)

    MathSciNet  MATH  Google Scholar 

  47. Karakhanyan, A.L.: Up-to boundary regularity for a singular perturbation problem of p-Laplacian type. J. Differ. Equ. 226, 558–571 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Karakhanyan, A.L., Shahgholian, H.: Analysis of a free boundary at contact points with Lipschitz data. Trans. Amer. Math. Soc. 367(7), 5141–5175 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Karakhanyan, A.L., Kenig, C.E., Shahgholian, H.: The behavior of the free boundary near the fixed boundary for a minimization problem. Calc. Var. Part. Differ. Equ. 28(1), 15–31 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kenig, C. E.: Harmonic analysis techniques for second order elliptic boundary value problems. CBMS Regional Conference Series in Mathematics, 83. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, (1994)

  51. Koike, S.: On the ABP maximum principle for Lp-viscosity solutions of fully nonlinear PDE. Nonlinear dynamics in partial differential equations, 113-124, Adv. Stud. Pure Math., 64, Math. Soc. Japan, Tokyo, (2015)

  52. Koike, S., Świȩch, A.: Maximum principle for fully nonlinear equations via the iterated comparison function method. Math. Ann. 339(2), 461–484 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. Koike, S., Świȩch, A.: Existence of strong solutions of Pucci extremal equations with superlinear growth in \(Du\). J. Fixed Point Theory Appl. 5, 291–304 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. Koike, S., Świȩch, A.: Weak Harnack inequality for fully nonlinear uniformly elliptic PDE with unbounded ingredients. J. Math. Soc. Japan 61(3), 723–755 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Koike, S., Świȩch, A.: Existence of strong solutions of Pucci extremal equations with superlinear growth in Du. J. Fixed Point Theory Appl. 5(2), 291–304 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  56. Koike, S., Świȩch, A.: Local maximum principle for \(L^p\)-viscosity solutions of fully nonlinear elliptic PDE’s with unbounded coefficients. Comm. Pure Appl. Anal. 11(5), 1897–1900 (2012)

    Article  MATH  Google Scholar 

  57. Koike, Shigeaki, Tateyama, Shota: On Lp-viscosity solutions of bilateral obstacle problems with unbounded ingredients. Math. Ann. 377(3–4), 883–910 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  58. Lederman, C., Wolanski, N.: A two phase elliptic singular perturbation problem with a forcing term. J. Math. Pures Appl. (9) 86(6), 552–589 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  59. Lewis, J.L., Nyström, K.: Regularity of flat free boundaries in two-phase problems for the p-Laplace operator. Ann. Inst. H. Poincaré Anal. Non Linéaire 29(1), 83–108 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  60. Lieberman, G.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12(11), 1203–1219 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  61. Lieberman, G.M.: The natural generalization of the natural conditions of Ladyzhenskaya and Uraltseva for elliptic equations. Comm. Part. Differ. Equ. 16(2–3), 311–361 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  62. Lieberman, G.: Second Order Parabolic Differential Equations. World Scientific Publishing Co. Inc., River Edge, NJ (1996)

    Book  MATH  Google Scholar 

  63. Lukkari, T.: Boundary continuity of solutions to elliptic equations with nonstandard growth. Manuscripta Math. 132(3–4), 463–482 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  64. Martinez, S., Wolanski, N.: A minimum problem with free boundary in Orlicz spaces. Adv. Math. 218(6), 1914–1971 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  65. Matevosyan, N., Petrosyan, A.: Almost monotonicity formulas for elliptic and parabolic operators with variable coefficients. Comm. Pure Appl. Math. 64(2), 271–311 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  66. Moreira, D.R., Wang, L.: Hausdorff measure estimates and Lipschitz regularity in inhomogeneous nonlinear free boundary problems. Arch. Ration. Mech. Anal. 213(2), 527–559 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  67. Nazarov, A.I.: A centennial of the Zaremba-Hopf-Oleinik lemma. SIAM J. Math. Anal. 44(1), 437–453 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  68. Nornberg, G.: \(C^{1,\alpha }\) regularity for fully nonlinear elliptic equations with superlinear growth in the gradient. J. Math. Pures Appl. (9) 128, 297–329 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  69. Pucci, P., Serrin, J.: The Maximum Principle. Progress in Nonlinear Differential Equations and Their Applications, vol. 73. Birkhauser, AG (2007)

    MATH  Google Scholar 

  70. Raynor, S.: Neumann fixed boundary regularity for an elliptic free boundary problem. Comm. Partial Differential Equations 33(10–12), 1975–1995 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  71. Ricarte, Gleydson C., da Silva, João Vitor.: Regularity up to the boundary for singularly perturbed fully nonlinear elliptic equations. Interfaces Free Bound. 17(3), 317–332 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  72. Safonov, M. V.: Non-divergence elliptic equations of second order with unbounded drift. Nonlinear partial differential equations and related topics, 211-232, Amer. Math. Soc. Transl. Ser. 2, 229, Adv. Math. Sci., 64, Amer. Math. Soc., Providence, RI, (2010)

  73. Sirakov, B.: Solvability of uniformly elliptic fully nonlinear PDE. Arch. Ration. Mech. Anal. 195(2), 579–607 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  74. Sirakov, B.: Boundary Harnack estimates and quantitative strong maximum principles for uniformly elliptic PDE. Int. Math. Res. Not. IMRN 24, 7457–7482 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  75. Świçech, A.: \(W^{1, p}\)-Interior estimates for solutions of fully nonlinear, uniformly elliptic equations. Adv. Differ. Equ. 2(6), 1005–1027 (1997)

    Google Scholar 

  76. Świȩch, A.: Pointwise properties of Lp-viscosity solutions of uniformly elliptic equations with quadratically growing gradient terms. Discrete Contin. Dyn. Syst. 40(5), 2945–2962 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  77. Wang, P.-Y.: Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. I. Lipschitz free boundaries are \(C^{1,\alpha }\). Comm. Pure Appl. Math. 53(7), 799–810 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  78. Wang, P.-Y.: Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. II. Flat free boundaries are Lipschitz. Comm. Part. Differ. Equ. 27(7–8), 1497–1514 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  79. Wang, P.-Y.: Existence of solutions of two-phase free boundary problems for fully nonlinear elliptic equations of second order. J. Geom. Anal. 13(4), 715–738 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Gary Lieberman for sharing with us some thoughts about the boundary regularity for quasilinear equations with unbounded RHS (Remark 13.1). We also thank Mariana Smit Vega Garcia for kindly bring to our attention the paper [21] by O. Savin and H. Chang-Lara. We would like to thank Sandro Salsa and Carlos Kenig for sharing some comments and impressions in an earlier version of this manuscript. We also thank Ovidiu Savin for a nice discussion that led to Proposition 14.2. The work of the second author is partially funded by PRONEX (FUNCAP) and by CNPq (Brazil). The work of the first author is funded by CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego R. Moreira.

Additional information

Communicated by L. Caffarelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: On The Comparison Principle and Additional Properties

Appendix: On The Comparison Principle and Additional Properties

1.1 Fully Nonlinear

Lemma 14.1

Let \(U\subset {\mathbb {R}}^{n}\) be an open set and \(f,g\in L^{n}(U)\). Suppose that \( {\mathcal {P}}_{\gamma }^{\pm }[u]= f\) in U in the \(L^{n}\)-viscosity sense and that \(v\in W_{loc}^{2,n}(U)\) is a strong solution to \( {\mathcal {P}}_{\gamma }^{\pm }[v]= g \) in U. Then, \(u-v\in S(\gamma , f-g)\) in U.

Proof

The proof is done in Lemma 7.2 in [8] although there the drift coefficient is bounded. It is easy to see that the argument does not depend on the boundedness of the drift coefficient and thus can be repeated here. \(\square \)

Proposition 14.1

(Comparison Principle) Suppose \(U\subset {\mathbb {R}}^{n}\) is a bounded open set. Assume that

$$\begin{aligned} {\mathcal {P}}_{\gamma }^{-}(M-N, p-q,x) \le F(x,p,M) -F(x,q,N) \le {\mathcal {P}}_{\gamma }^{+}(M-N, p-q,x) \end{aligned}$$
(UE)
$$\begin{aligned} \forall p\in {\mathbb {R}}^{n}, \forall M\in {\mathcal {S}}^{n\times n},\ \text { and for } \ a.e.\ x\in U. \end{aligned}$$

Assume that \(u,v\in C^{0}({\overline{U}})\) with \(v\in W^{2,n}_{loc}(U)\) be such that

$$\begin{aligned} F(D^2u(x), \nabla v(x), x)\ge & {} f(x) \quad \text { in } \ L^{n}-\text {viscosity sense in } \ U \\ F(D^2v(x), \nabla v(x), x)\le & {} f(x) \quad a.e \ \text { in } \ U. \end{aligned}$$

This way

$$\begin{aligned} u\le v \quad \text { along } \ \partial U \Longrightarrow u\le v \quad \text { in } \ U. \end{aligned}$$

Moreover, the roles of \(L^{n}-\)viscosity and \(L^{n}-\)strong solutions played by u and v can be swapped.

Proof

The Proposition above is essentially a consequence of the ABP estimate and the fact the \(L^{p}-\)strong solutions are also viscosity solutions. Both of these facts also holds in the case \(\gamma , f\) are in \(L^{q}\) with \(q>n\). The ABP estimate is Theorem 2.4 of [54] and the second one is Theorem 3.1 in [54]. Thus, under the possession of these facts, we can repeat the same proof of the bounded drift coefficient case done in Theorem 2.10 in [17]. \(\square \)

As a Corollary of the Comparison Principle, Proposition 14.1, we indicate the following Lipschitz type estimates in rings that was needed in the proof of Theorem 4.1. As before, we use the following notation

$$\begin{aligned} {\mathcal {A}}_{\frac{r}{2}, r}(x_0){:}{=} \Big \{x\in {\mathbb {R}}^{n}; \ \frac{r}{2}<|x - x_0|<r \Big \}. \end{aligned}$$

Proposition 14.2

Let us assume that \(u\in C^{0}(\overline{{\mathcal {A}}_{\frac{r}{2}, r}(x_0)})\cap S^{*}(\gamma ;f)\) in \({\mathcal {A}}_{\frac{r}{2}, r}(x_0)\) where \(\gamma \in L_{+}^{q_{0}}({\mathcal {A}}_{\frac{r}{2}, r}(x_0))\) and \(f\in L^{q}({\mathcal {A}}_{\frac{r}{2}, r}(x_0))\) under (EC). Assume that \(u=0\) along \(\partial {\mathcal {A}}_{\frac{r}{2}, r}(x_0)\). Then, the following estimate holds

$$\begin{aligned} |u(x)|\le C \cdot r^{1-\frac{n}{q}}\cdot ||f||_{L^{q}({\mathcal {A}}_{\frac{r}{2}, r}(x_0))}\quad \forall x\in \overline{{\mathcal {A}}_{\frac{r}{2}, r}(x_0))} \end{aligned}$$

where

$$\begin{aligned} C=C(n,\lambda ,\Lambda , q, q_{0}, r^{1-\frac{n}{q_{0}}}\cdot ||\gamma ||_{L^{q_{0}}( {\mathcal {A}}_{\frac{r}{2},r})})>0. \end{aligned}$$

Proof

The proof goes essentially ipsis-literis to the proof of Lemma 7.3 in [8] that was originally hinted to us by Ovidiu Savin. The only difference is that now the drift coefficient \(\gamma \in L^{q_{0}}\) with \(q_0\ge q>n\) instead of \(\gamma \in L^{\infty }.\) So, we argue as in Lemma 7.3 in [8] just by replacing the existence Theorem (to barriers in (7.54) in [8]) and the \(C^{1,\alpha }\) up to the boundary estimate by the case where the drift coefficient \(\gamma \) is now unbounded. These results are respectively Theorem 2.4 in [55] and Theorem 1.1 in [68]. \(\square \)

1.2 Quasilinear

We start by proving a technical approximation Lemma.

We define for an open set \(U\subset {\mathbb {R}}^{n}\)

$$\begin{aligned} W_{c}^{1,G}(U){:}{=}\Big \{u\in W^{1,G}(U); \ supp(u) \ \text { is compact } \Big \}, \quad \end{aligned}$$

Lemma 14.2

Let \(V \subset {\mathbb {R}}^{n}\) be a bounded open set in \({\mathbb {R}}^{n}\). Assume that \(0\le u\in W_{c}^{1,G}(V)\). Then,

$$\begin{aligned} \exists \big \{\phi _{\varepsilon }\big \}_{\varepsilon >0}\subset C_{0}^{\infty }(V), \quad \phi _{\varepsilon }\ge 0 \ \text { such that } \ \phi _{\varepsilon } \rightarrow u \ \text { in } \ W_{0}^{1,G}(V). \end{aligned}$$

Proof

Let \(supp(u)\subset V_{0}\subset \subset V_{00}\subset \subset V\) for open sets \(V_{0}, V_{00}\). Let \(\eta \) be a smooth standard mollifier, i.e, \(\eta \in C_{0}^{\infty }({\mathbb {R}}^{n}), \ supp(\eta )\subset B_{1}\), \(0\le \eta \le 1\) and \(\eta \) radially symmetric such that \(\int _{{\mathbb {R}}^{n}}\eta (x)dx=1\). We then set

$$\begin{aligned} \phi _{\varepsilon }(x){:}{=}\int _{V}u(y)\eta _{\varepsilon }(x-y)dy \quad \text { for } \quad x\in U_{\varepsilon }{:}{=}\big \{x\in U; \ dist(x,\partial V)> \varepsilon \big \} \end{aligned}$$

where \(\eta _{\varepsilon }(x){:}{=}\varepsilon ^{-n}\eta (x/\varepsilon ).\) For \(p=1+\delta _{0}\), we have \(u\in W^{1,G}(V_{0})\hookrightarrow W^{1,p}(V_{0})\hookrightarrow L^{1}(V_{0})\) by Theorem 2.2 in [64]. Then for \(\varepsilon<<1\), we have \(0\le \phi _{\varepsilon }\in C_{c}^{\infty }(V_{00})\) and also that \(\nabla \phi _{\varepsilon }(x)= (\nabla u*\eta _{\varepsilon })(x)\ \forall x\in V_{00}\) (by Lemma 7.3 in [42]). The proof is finished by observing that \(||\phi _{\varepsilon } - u||_{W^{1,G}(V)} = ||\phi _{\varepsilon } - u||_{W^{1,G}({\mathbb {R}}^{n})}\rightarrow 0 \) by Lemma 2.1 in [35].\(\square \)

Lemma 14.3

Let \(V\subset {\mathbb {R}}^{n}\) be a bounded open set and \(\Upsilon :W_{c}^{1,G}(V)\rightarrow {\mathbb {R}}\) be a linear functional. Assume that

$$\begin{aligned} \Upsilon (\varphi ) \le 0 \quad \forall \varphi \in C_{0}^{\infty }(V), \ \varphi \ge 0. \end{aligned}$$
(14.1)

If \(\Upsilon \) is bounded on the smooth compactly supported functions, i.e, if there exists \(C>0\) such that

$$\begin{aligned} |\Upsilon (\varphi )|\le C\cdot ||\varphi ||_{W_{0}^{1,G}(V)}, \quad \forall \varphi \in C_{0}^{\infty }(V). \end{aligned}$$

Then, (14.1) holds for every \(\varphi \in W_{c}^{1,G}(V), \ \varphi \ge 0.\)

Proof

Let \(0\le \xi \in W_{c}^{1,G}(V).\) By Lemma 14.2, there exists \(0\le \phi _{\varepsilon } \in C_{0}^{\infty }(V)\) with \(\phi _{\varepsilon }\rightarrow \xi \) in \(W_{0}^{1,G}(V).\) Now,

$$\begin{aligned} |\Upsilon (\xi )-\Upsilon (\phi _{\varepsilon })| = |\Upsilon (\xi -\phi _{\varepsilon })| \le C\cdot ||\xi -\phi _{\varepsilon }||_{W_{0}^{1,G}(V)}. \end{aligned}$$

Since \(\Upsilon (\phi _{\varepsilon })\le 0\) by (14.1), passing to the limit via inequality above we arrive to \(\Upsilon (\xi )\le 0\). \(\square \)

Lemma 14.4

Let \(V\subset {\mathbb {R}}^{n}\) be a open bounded set. Let \(X\in L^{{\widetilde{G}}}(V;{\mathbb {R}}^{n})\) and define \(\Lambda _{X}:W_{c}^{1,G}(V)\rightarrow {\mathbb {R}}\) by

$$\begin{aligned} \Lambda _{X}(\varphi ){:}{=}\int _{V} X(x)\cdot \nabla \varphi (x) dx. \end{aligned}$$

Then, \(\Lambda _{X}\) is linear and bounded, i.e,

$$\begin{aligned} |\Lambda _{X}(\varphi )|\le ||X||_{L^{{\widetilde{G}}}(V)} \cdot || \varphi ||_{W_{0}^{1,G}(V)}. \end{aligned}$$

Proof

Linearity is trivial. The boundedness is a direct consequence of Hölder inequality in the context of Orlicz spaces (Remark 9.1 item f). Indeed,

$$\begin{aligned} |\Lambda _{X}(\varphi )|\le \int _{V} |X(x)|\cdot |\nabla \varphi (x)| dx \le 2||X||_{L^{{\widetilde{G}}}(V)} ||\nabla \varphi ||_{L^{{G}}(V)} \le 2 ||X||_{L^{{\widetilde{G}}}(V)} || \varphi ||_{W_{0}^{1,G}(V)}. \end{aligned}$$

\(\square \)

Lemma 14.5

Let \(V\subset {\mathbb {R}}^{n}\) be a bounded open set and \(f\in L^{q}(V)\) with \(q\ge n\). Consider the functional given by

$$\begin{aligned} \Lambda _{f}:W_{c}^{1,G}(V)\rightarrow {\mathbb {R}}, \quad \Lambda _{f}(\xi )=\int _{V}f(x)\xi (x)dx. \end{aligned}$$

Then, there exist a constant \(C=C(||f||_{L^{q}(V)}, |V|,n , \delta _{0}, g_{0})>0\) such that

$$\begin{aligned} |\Lambda _{f}(\xi )|\le C\cdot ||\xi ||_{W_{0}^{1,G}(V)}. \end{aligned}$$
(14.2)

Proof

Let \(\xi \in W_{c}^{1,G}(V).\) By regularization process, it is easy to see that \(\xi \in W_{c}^{1,G}(V)\subset W_{0}^{1,G}(V)\). Now, we recall once more (by by Theorem 2.2 in [64]) that \(W_{0}^{1,G}(V)\hookrightarrow W_{0}^{1,p}(V)\) where \(p=1+\delta _{0}>1\). We study three possible cases:

Case 1: Suppose \(p>n\). In this case, \(W_{0}^{1,p}(V)\hookrightarrow L^{\infty }(V)\) and then if \(q'=q/(q-1)\),

$$\begin{aligned} |\Lambda _{f}(\xi )|\le & {} ||f||_{L^{q}(V)}\cdot ||\xi ||_{L^{q'}(V)}\\\le & {} |V|^{\frac{1}{q'}}\cdot ||f||_{L^{q}(V)}\cdot ||\xi ||_{L^{\infty }(V)} \\\le & {} C_{1}\cdot |V|^{\frac{1}{q'}}\cdot ||f||_{L^{q}(V)}\cdot ||\xi ||_{W_{0}^{1,p}(V)}\\\le & {} C_{2}\cdot |V|^{\frac{1}{q'}} ||f||_{L^{q}(V)}\cdot ||\xi ||_{W_{0}^{1,G}(V)} \end{aligned}$$

for \(C_{1}, C_{2}>0\) depending on \(n,\delta _{0}, g_{0}\).

Case 2: Suppose \(p=n\). In this case, \(W_{0}^{1,p}(V)\hookrightarrow L^{r}(V)\) for all \(r\in [1,\infty )\). Then, as before

$$\begin{aligned} |\Lambda _{f}(\xi )|\le & {} ||f||_{L^{q}(V)}\cdot ||\xi ||_{L^{q'}(V)}\\\le & {} C_{1} \cdot ||f||_{L^{q}(V)}\cdot ||\xi ||_{W_{0}^{1,p}(V)}\\\le & {} C_{2}\cdot ||f||_{L^{q}(V)}\cdot ||\xi ||_{W_{0}^{1,G}(V)} \end{aligned}$$

where \(C_{1}, C_{2}>0\) depend on \(n, \delta _{0}, g_{0}, q\).

Case 3: Suppose \(1<p<n\). In this case, \(W_{0}^{1,p}(V)\hookrightarrow L^{p*}(V)\) with \(p^{*}=np/(n-p)\). Observe that \((p^{*})' = np/(np-n+p).\) Now, we have

$$\begin{aligned} p>1 \Longleftrightarrow n<np \Longleftrightarrow p< np-n+p \Longleftrightarrow (p^{*})'=\frac{np}{np-n+p} < n. \end{aligned}$$

This way, since we know that \(p=1+\delta _{0}>1\) then \((p^{*})'<n\le q\). Thus,

$$\begin{aligned} |\Lambda _{f}(\xi )|\le & {} ||f||_{L^{(p^{*})'}(V)}\cdot ||\xi ||_{L^{p^{*}}(V)}\\\le & {} C_{1}\cdot |V|^{\frac{1}{(p^{*})'}-\frac{1}{q}}\cdot ||f||_{L^{q}(V)}\cdot ||\xi ||_{W_{0}^{1,p}(V)} \\\le & {} C_{2}\cdot |V|^{\frac{1}{(p^{*})'}-\frac{1}{q}}\cdot ||f||_{L^{q}(V)}\cdot ||\xi ||_{W_{0}^{1,G}(V)} \end{aligned}$$

where \(C_{1}, C_{2}>0\) depend on \(n, \delta _{0}, g_{0}\). Thus, in any case, there exists a constant \(C>0\) with the dependence as indicated in the statement so that

$$\begin{aligned} |\Lambda _{f}(\varphi )|\le C\cdot ||\varphi ||_{W_{0}^{1,G}(V)}. \end{aligned}$$
(14.3)

\(\square \)

Lemma 14.6

In the definition of subsolution given in (3.5) we can take test functions \(0\le \varphi \in W_{c}^{1,G}(\Omega )\) provided \(f\in L_{loc}^{n}(\Omega )\).

Proof

Indeed, for each \(V\subset \subset \Omega \), we set \(\Upsilon _{V}:W_{c}^{1,G}(V)\rightarrow {\mathbb {R}}\) given by

$$\begin{aligned} \Upsilon _{V}(\varphi ){:}{=} \int _{V} H_{g}(\nabla u)\nabla u\cdot \nabla \varphi ~dx+ \int _{V} f(x)\varphi (x)dx = \Lambda _{X}(\varphi )+\Lambda _{f}(\varphi ) \end{aligned}$$

where \(X(x)=H_{g}(\nabla u)\nabla u(x)\). In order to prove the result, it is enough to prove that

$$\begin{aligned} \Upsilon _{V}(\varphi )\le 0 \quad \forall \varphi \in W_{c}^{1,G}(V), \quad \varphi \ge 0. \end{aligned}$$

Since u is a subsolution, what we do know is that

$$\begin{aligned} \Upsilon _{V}(\varphi )\le 0 \quad \forall \varphi \in C_{0}^{\infty }(V), \quad \varphi \ge 0. \end{aligned}$$

We observe now that

$$\begin{aligned} \int _{V}{\widetilde{G}}(|X(x)|)dx= & {} \int _{V} {\widetilde{G}}\Big (\big |H_{g}(\nabla u)\nabla u\big |\Big )dx\le \int _{V} {\widetilde{G}}\Big (g(|\nabla u|)\Big )dx\\ {}\le & {} g_{0}\int _{V}G(|\nabla u|)dx =T<\infty \end{aligned}$$

Thus, \(||X||_{L^{{\widetilde{G}}}(V)} <\infty \) by Remark 9.1 item e). By Lemma 14.4 and Lemma 14.5, we conclude that \(\Upsilon _{V}\) is bounded in \(W_{c}^{1,G}(V)\). The result follows now immediately from Lemma 14.3. \(\square \)

Now, we are in conditions to prove the Comparison Principle for quasilinear equations.

We consider equations of the form in \(U\subset {\mathbb {R}}^{n}\) an open set in \({\mathbb {R}}^{n}\)

$$\begin{aligned} Q_{{\mathcal {A}}}[u] {:}{=}div(A(x,\nabla u) = f \quad \text { in } \ \ U. \end{aligned}$$

Here, \({\mathcal {A}}:\Omega \times {\mathbb {R}}^{n}\rightarrow {\mathbb {R}}^{n}\) are continuous satisfying the following conditions

figure d
figure e
figure f

The concepts of solutions (sub and supersolutions) are defined as in (3.5).

Proposition 14.3

(Comparison principle for the quasilinear case with local integrabiltiy) Let \(\Omega \) be an open bounded set. Assume \(u,v\in W_{loc}^{1,G}(\Omega )\) and \(f\in L^{1}(\Omega )\) be such that \(Q_{{\mathcal {A}}}[u] \ge f\) and \(Q_{{\mathcal {A}}}[v]\le f\) in the distributional sense in \(\Omega \). Suppose the operator \({\mathcal {A}}\) satisfy the properties \(Q_{1}), Q_{2}), Q_{3})\). This way, if \(u,v\in C^{0}({\overline{\Omega }})\) with \(u\le v\) on \(\partial \Omega \) then \(u\le v\) along \(\Omega \).

Proof

Writing down the weak formulation of the equations, we have

$$\begin{aligned}&\int _{\Omega } {\mathcal {A}}(x, \nabla u(x))\cdot \nabla \varphi (x) dx \le -\int _{\Omega }f(x)\varphi (x)dx \quad \forall \varphi \in C_{0}^{\infty }(\Omega ), \quad \varphi \ge 0.\\&-\int _{\Omega } {\mathcal {A}}(x, \nabla v(x))\cdot \nabla \varphi (x) dx \le \int _{\Omega }f(x)\varphi (x)dx \quad \forall \varphi \in C_{0}^{\infty }(\Omega ), \quad \varphi \ge 0. \end{aligned}$$

Adding the inequalities above, we arrive to

$$\begin{aligned} \int _{\Omega } \Big ({\mathcal {A}}(x, \nabla u(x)) - {\mathcal {A}}(x, \nabla v(x)) \Big )\cdot \nabla \varphi (x) ~dx \le 0\quad \forall \varphi \in C_{0}^{\infty }(\Omega ), \quad \varphi \ge 0. \end{aligned}$$
(14.4)

We now set the vector fields

$$\begin{aligned} X_{u}(x){:}{=}{\mathcal {A}}(x,\nabla u(x)), \quad X_{v}{:}{=}{\mathcal {A}}(x,\nabla v(x)) \ \text { for } \ x\in \Omega . \end{aligned}$$

Observe that by (\(Q_{2}\))

$$\begin{aligned} {\widetilde{G}}(|X_{u}(x)|)\le & {} {\widetilde{G}}\Big (\Lambda _{0}^{\star }\cdot g\Big (|\nabla u(x)|\Big )\Big )\\\le & {} {\widetilde{G}}\Big (\big (\Lambda _{0}^{\star }+1\big )\cdot g\Big (|\nabla u(x)|\Big )\Big ) \\\le & {} \frac{\delta _{0}}{\delta _{0}+1}\cdot \big (\Lambda _{0}^{\star }+1\big )^{1+\frac{1}{\delta _{0}}}\cdot {\widetilde{G}}\Big (g\Big (|\nabla u(x)|\Big )\Big ) \quad \big (\text {by Remark} \ 9.1) \ c)\big ) \\\le & {} g_{0} \frac{\delta _{0}}{\delta _{0}+1}\cdot \big (\Lambda _{0}^{\star }+1\big )^{1+\frac{1}{\delta _{0}}}\cdot G\Big (\big |\nabla u(x)\big |\Big ). \quad \big (\text {by Remark} \ 9.1) \ d)\big ) \end{aligned}$$

Thus, let \(V\subset \subset \Omega \) be an open set. Then,

$$\begin{aligned} \int _{V} {\widetilde{G}}(|X_{u}(x)|) dx \le g_{0} \cdot \big (\Lambda _{0}^{\star }+1\big )^{1+\frac{1}{\delta _{0}}}\cdot \int _{V} G\Big (\big |\nabla u(x)\big |\Big )dx<\infty . \end{aligned}$$

Analogously,

$$\begin{aligned} \int _{V} {\widetilde{G}}(|X_{v}(x)|) dx \le g_{0}\cdot \big (\Lambda _{0}^{\star }+1\big )^{1+\frac{1}{\delta _{0}}}\cdot \int _{V} G\Big (\big |\nabla v(x)\big |\Big )dx<\infty . \end{aligned}$$

Thus

$$\begin{aligned} \max \Big \{||X_{u}||_{L^{{\widetilde{G}}}(V)},||X_{v}||_{L^{{\widetilde{G}}}(V)} \Big \}<\infty . \end{aligned}$$
(14.5)

Thus, if we define \(\Upsilon :W_{c}^{1,G}(V)\rightarrow {\mathbb {R}}\) given by \((\varphi \in W_{c}^{1,G}(V))\)

$$\begin{aligned} \Upsilon (\varphi )= & {} \int _{\Omega } \Big ({\mathcal {A}}(x, \nabla u(x)) - {\mathcal {A}}(x, \nabla v(x)) \Big )\cdot \nabla \varphi (x) ~dx\\= & {} \int _{V} \Big ({\mathcal {A}}(x, \nabla u(x)) - {\mathcal {A}}(x, \nabla v(x)) \Big )\cdot \nabla \varphi (x) ~dx \\= & {} \Lambda _{X_{u}}(\varphi ) - \Lambda _{X_{v}}(\varphi ). \\ \end{aligned}$$

Now, by (14.5) and Lemma 14.4

$$\begin{aligned} \Upsilon :W_{c}^{1,G}(V)\rightarrow {\mathbb {R}}\quad \text {is linear and satisfies} \quad |\Upsilon (\varphi )|\le C\cdot || \varphi ||_{W_{0}^{1,G}(V)}. \end{aligned}$$

Observe that \(\Upsilon (\varphi ) \le 0\) forall \(\varphi \in C_{0}^{\infty }(V)\) such that \(\varphi \ge 0\) by (14.4). This way, we conclude by Lemma 14.3 that (14.4) holds in fact for any \(0\le \varphi \in W_{c}^{1,G}(V)\). Since \(V\subset \subset \Omega \) was taken arbitrary, we actually proved that

$$\begin{aligned} \int _{\Omega } \Big ({\mathcal {A}}(x, \nabla u(x)) - {\mathcal {A}}(x, \nabla v(x)) \Big )\cdot \nabla \varphi (x) ~dx \le 0\quad \forall \varphi \in W_{c}^{1,G}(\Omega ), \quad \varphi \ge 0.\qquad \end{aligned}$$
(14.6)

We set \(w{:}{=}u-v\in C^{0}({\overline{\Omega }})\) and \(w\le 0\) along \(\partial \Omega \) pointwise. Since \(\Omega \) is bounded, w is uniformly continuous in \({\overline{\Omega }}\). This way, for any \(\varepsilon >0\) there exists a \(\delta >0\) such that \(w_{\varepsilon }(x){:}{=}(w-\varepsilon )^{+}(x) =0\) for all \(x\in \Omega _{\delta }{:}{=}\{y\in {\overline{\Omega }}; \ dist(y,\partial \Omega ) <\delta \} \subset \subset \Omega .\) In particular, this proves that \(w_{\varepsilon }\in W_{c}^{1,G}(\Omega )\subset W_{0}^{1,G}(\Omega )\) and thus, \(0\le w_{\varepsilon }\) becomes an admissible test function, i.e, by (14.6) we find

$$\begin{aligned} 0\ge & {} \int _{\Omega } \Big ({\mathcal {A}}(x, \nabla u(x)) - {\mathcal {A}}(x, \nabla v(x)) \Big )\cdot \nabla w_{\varepsilon }(x) ~dx\\= & {} \int _{\{ u>v+\varepsilon \} } \Big ({\mathcal {A}}(x, \nabla u(x)) - {\mathcal {A}}(x, \nabla v(x)) \Big )\cdot \big (\nabla u(x) -\nabla v(x)\big )~dx. \end{aligned}$$

By property \(Q_{1}\),

$$\begin{aligned} I(x){:}{=} \Big ({\mathcal {A}}(x, \nabla u(x)) - {\mathcal {A}}(x, \nabla v(x)) \Big )\cdot \big (\nabla u(x) -\nabla v(x)\big )\ge 0 \quad a.e. \ \text { in }\ \Omega . \end{aligned}$$

This implies, in particular, that \(I(x)=0\) for almost every \(x\in \{ u>v+\varepsilon \}\). As a matter of fact, we can deduce from \(Q_{1}\) that \(\nabla u = \nabla v \ a.e. \) in \(\{ u>v+\varepsilon \}.\) This implies \(\nabla w_{\varepsilon } = 0 \ a.e.\) in \(\Omega .\) Since \(W_{0}^{1,G}(\Omega )\hookrightarrow W_{0}^{1,1+\delta }(\Omega )\) (see Theorem 2.2 in [64]), we conclude by Poincaré inequality that \(||w_{\varepsilon }||_{L^{1+\delta }(\Omega )} \le C\cdot ||\nabla w_{\varepsilon }||_{L^{1+\delta }(\Omega )}=0.\) Thus \(w_{\varepsilon }=0 \ a.e.\) in \(\Omega \). Since \(w_{\varepsilon } \in C^{0}({\overline{\Omega }})\), we actually have \(w_{\varepsilon }\equiv 0\) in \(\Omega \). Moreover, since \(g(t)=t^{+}\) is Lipschitz continuous with \([g]_{C^{0,1}({\mathbb {R}})} = 1\), then \(\forall x\in \Omega \) and \(\forall \varepsilon >0\)

$$\begin{aligned} |(u-v)^{+}(x)| = |w_{\varepsilon }(x) -(u-v)^{+}(x)| = | (u(x)-v(x)-\varepsilon )^{+}- (u-v)^{+}(x) | \le \varepsilon \end{aligned}$$

Letting \(\varepsilon \rightarrow 0\), we conclude that \((u-v)^{+}\equiv 0\) in \(\Omega \), i.e, \(u\le v\) in \(\Omega \). \(\square \)

Remark 14.1

(Inhomogeneous Hopf-Oleĭnik Lemma for quasilinear equations in [9]) The version of the Comparison Principle for quasilinear equations above is needed in the proof of the Inhomogeneous Hopf-Oleĭnik Lemma, Theorem 3.2 in [9]. Theorem 3.2 in [9] is correct and as it was stated for functions in \(C^{0}({\overline{\Omega }})\cap W_{loc}^{1,G}(\Omega )\). However, in our proof there, we used a weaker version of the Comparison Principle for quasilinear equations, namely, Proposition 5.2 in [9]. This version assumes integrability of the gradients all the way up to the boundary, i.e, \(u,v\in C^{0}({\overline{\Omega }})\cap W^{1,G}(\Omega ).\) The new version of the Comparison Principle above (Proposition 14.3) requires only interior local integrability of the gradients. Thus, by using it (instead of Proposition 5.2 in [9]), we fix this small shortcoming into the proof of Theorem 3.2 in [9].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braga, J.E.M., Moreira, D.R. Up to the boundary gradient estimates for viscosity solutions to nonlinear free boundary problems with unbounded measurable ingredients. Calc. Var. 61, 197 (2022). https://doi.org/10.1007/s00526-022-02289-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02289-2

Keywords

Mathematics Subject Classification

Navigation