Skip to main content
Log in

Free boundary theory for singular/degenerate nonlinear equations with right hand side: a non-variational approach

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We use non-variational type arguments to prove optimal regularity and smoothness of the free boundary for one-phase solutions to inhomogeneous nonlinear free boundary problems (FBP) governed by singular/degenerate elliptic PDEs with a nonzero right hand side (RHS). In a precise way, we show that viscosity solutions to FBP, as previously mentioned, are locally Lipschitz continuous and under certain conditions, flat or Lipschitz free boundaries, are \(C^{1, \alpha }.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that, by Sobolev embedding, \(\phi \in C^{1, 1 - n/q}_{loc}(\Omega )\).

References

  1. Adams, R., Fournier, J.: Sobolev spaces, 2nd edn. Academic Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Alt, H.W., Caffarelli, L.A.: Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325, 105–144 (1981)

    MathSciNet  MATH  Google Scholar 

  3. Alt, H.W., Caffarelli, L.A., Friedman, A.: Variational problems with two phases and their free boundaries. Trans. Am. Math. Soc. 282, 431–461 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Braga, J., Ederson, M.: On the Lipschitz regularity and asymptotic behaviour of the free boundary for classes of minima of inhomogeneous two-phase Alt-Caffarelli functionals in Orlicz spaces. Annali di Matematica 197(6), 1885–1921 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Braga, J., Ederson, M., Moreira, D.: Inhomogeneous Hopf–Oleĭnik lemma and regularity of semiconvex supersolutions via new barriers for the Pucci extremal operators. Adv. Math. 334, 184–242 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Braga, J., Ederson, M.: Free boundary theory for non-homogeneous fully non-linear equations with unbounded ingredients and quadratic growth in the gradient. J. Geom Anal. (2020). https://doi.org/10.1007/s12220-020-00404-3

    Article  Google Scholar 

  7. Caffarelli, L.A.: A Harnack inequality approach to the regularity of free boundaries. Part I: Lipschitz free boudaries are \(C^{1, \alpha }\). Rev. Mat. Iberoam. 3(2), 139–162 (1987)

    Article  MATH  Google Scholar 

  8. Caffarelli, L.A.: A Harnack inequality approach to the regularity of free boundaries. Part I: Flat free boudaries are Lipschitz. Comm. Pure Appl. Math. 42(1), 55–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cafarelli. L.A.: A Harnack inequality approach to the regularity of free boundaries. Part III: Existence theory, compactness, and dependence on X. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4 15(4), 583–602 (1988)

    MathSciNet  Google Scholar 

  10. Danielli, D., Petrosyan, A.: A minimum problem with free boundary for a degenerate quasilinear operator. Calc. Var. Part. Differ. Equ. 23(1), 97–124 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. De Silva, D.: Free boundary regularity for a problem with right hand side. Interfaces free Bound. 13, 223–238 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. De Silva, D., Roquejoffre, J.-M.: Regularity in a one-phase free boundary problem for the fractional Laplacian. Annales de l’I.H.P. Anal non Linaire 29(3), 335–367 (2012)

    MathSciNet  MATH  Google Scholar 

  13. De Silva, D., Ferrari, F., Salsa, S.: On two phase free boundary problems governed by elliptic equations with distributed sources. Discrete Contin. Dyn. Syst. Ser. S 7(4), 673–693 (2014)

    MathSciNet  MATH  Google Scholar 

  14. De Silva, D., Ferrari, F., Salsa, S.: Two-phase problems with distributed sources: regularity of the free boundary. Anal. PDE 7(2), 267–310 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. De Silva, D., Ferrari, F., Salsa, S.: Free boundary regularity for fully nonlinear nonhomogeneous two-phase problems. J. Math. Pures Appl. (9) 103(3), 658–694 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. De Silva, D., Ferrari, F., Salsa, S.: Regularity of the free boundary for two-phase problems governed by divergence form equations and applications. Nonlinear Anal. 138, 3–30 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dipierro, S., Karakhanyan, A.L.: A new discrete monotonicity formula with application to a two-phase free boundary problem in dimension two. Comm Par. Diff. Equ. 43(7), 1073–1101 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fang, F., Zhou, Z.: Relationship between solutions to a quasilinear elliptic equation in Orlicz Spaces. Elect. J. Diff. Equ. 265, 1–10 (2014)

    MathSciNet  Google Scholar 

  19. Julin, V., Juutinen, P.: A new proof for the equivalence of weak and viscosity solutions for the p-Laplace equation. Commun. Part. Differ. Equ. 37(5), 934–946 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Juutinen, P., Lindqvist, P., Manfredi, J.: On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation. SIAM J. Math. Anal. 33(3), 699–717 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lederman, C., Wolanski, N.: Weak solutions and regularity of the interface in an inhomogeneous free boundary problem for the \(p(x)\)-Laplacian. Interfaces Free Bound. 19(2), 201–241 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Leitão, R.A., Ricarte, G.: Free boundary regularity for a degenerate problem with right hand side. Interfaces Free Bound. 20(4), 577–595 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Leitão, R.A., Ricarte, G.: Free boundary regularity for a degenerate fully non-linear elliptic problem with right hand side. arXiv:1810.07840v1

  24. Lewis, J.L., Nyström, K.: Regularity of Lipschitz free boundaries in two-phase problems for the p-Laplace operator. Adv. Math. 225, 2565–2597 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lewis, J. L., Nyström, K.: Regularity of flat free boundaries in two-phase problems for the p-Laplace operator. Ann. de l’Institut Henri Poincare (C) Non Linear Analysis29, 83-108 (2010)

  26. Lieberman, G.M.: The natural generalization of the natural conditions of Ladyzhensaya and Uraltseva for elliptic equations. Comm. Part. Differ. Equ. 16(2 & 3), 311–361 (1991)

    Article  MATH  Google Scholar 

  27. Martinez, S., Wolanski, N.: A minimum problem with free boundary in Orlicz Spaces. Adv. Math. 218(6), 1914–1971 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Medina, M., Uchoa, P.: On the viscosity and weak solutions for non-homogeneous p-Lapace equations. Adv. Nonlinear Anal. 8(1), 468–481 (2019)

    Article  MathSciNet  Google Scholar 

  29. Milakis, E., Silvestre, L.: Regularity for fully nonlinear elliptic equations with neumann boundary data. Comm. Part. Diff. Equ. 31, 1227–1252 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for the suitable comments and suggestions and also for calling our attention to important corrections in Sections 8 and 9 of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ederson M. Braga.

Additional information

Communicated by O.Savin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Relationship between types of solutions to \(\Delta _g\)

Appendix: Relationship between types of solutions to \(\Delta _g\)

In this appendix, we answered the issue in Remark 1.5. Let G as in (2.1) and g satisfying (1.3). Consider u a solution to

$$\begin{aligned} \Delta _g u = f \ \ \ \text { in } \ \Omega , \end{aligned}$$
(10.1)

where \(f \in L^q(\Omega ), \ \ q > n\).

Definition 10.1

A function \(u \in W_{loc}^{1,G}(\Omega )\) is a weak supersolution(subsolution) to (10.1) if for any \(0 \le \phi \in C^{\infty }_0(\Omega )\) holds

$$\begin{aligned} \int _{\Omega } \frac{g(\vert \nabla u \vert )}{\vert \nabla u \vert } \nabla u \nabla \phi dx \ge - \int _{\Omega } f \phi dx \ \ \ (\text {resp. } \ \le ). \end{aligned}$$

The function u will be a weak solution to (10.1) if

$$\begin{aligned} \int _{\Omega } \frac{g(\vert \nabla u \vert )}{\vert \nabla u \vert } \nabla u \nabla \phi dx = - \int _{\Omega } f \phi dx, \end{aligned}$$

for any \(\phi \in C_0^{\infty }(\Omega )\).

Definition 10.2

A function \(u: \Omega \longrightarrow (-\infty , +\infty ]\) is called a G-superharmonic function, if u satisfies

  1. (1)

    u is lower semicontinuous,

  2. (2)

    u is bounded almost everywhere,

  3. (3)

    the comparison principle holds: if v is a weak solution of \(\Delta _g v = f\) in \(D \subset \Omega \), u is continuous in \(\overline{D}\) and \(u \ge v\) on \(\partial D\), then \(u \ge v\) in D.

A function \(u:\Omega \longrightarrow [ - \infty , + \infty )\) is G-subharmonic, if \(-u\) is G-superharmonic.

Definition 10.3

A function \(u: \Omega \longrightarrow (-\infty , +\infty ]\) is called a \(L^q\)-viscosity supersolution(subsolution) to (10.1) if u satisfies

  1. (1)

    u is lower semicontinuous;

  2. (2)

    u is bounded almost everywhere;

  3. (3)

    If there exists \(\phi \in W^{2,q}_{loc}(\Omega )\) touching u by below(above) strictly at \(x_0 \in \Omega \) and \(\nabla \phi (x_0) \ne 0\)Footnote 1, then

    $$\begin{aligned} ess\liminf \limits _{x \rightarrow x_{0}} \Big (\Delta _g \phi (x) - f(x)\Big ) \le 0 \ \ \ \left( ess\limsup \limits _{x \rightarrow x_{0}} \Big (\Delta _g \phi (x) - f(x)\Big ) \ge 0 \right) . \end{aligned}$$

We have the following results.

Lemma 10.4

Let \(u \in C^0(\Omega )\). Are equivalents:

  1. (A)

    u is a weak supersolution to (10.1);

  2. (B)

    u is a G-superharmonic function in \(\Omega \);

Similar consequences holds for solutions and subsolutions.

Proof

The proof follows the same guidelines of Theorems 2.4 and 2.5 of [18].

Proposition 10.5

Let u be a weak supersolution to (10.1). Then, u is a \(L^q\)-viscosity supersolution solution to (10.1).

Proof

By Lemma 10.4 it is sufficient to prove that G-superharmonic functions in \(\Omega \) are \(L^q\)-viscosity supersolutions. Assume, by contradiction, that u is G-superharmonic but u is a not a \(L^q\)-viscosity supersolution of (10.1). In this case, there exists \(\phi \in W^{2,q}_{loc}(\Omega )\) touching u by below strictly at \(x_0 \in \Omega \) with \(\nabla \phi (x_0) \ne 0\) and \(\mu > 0\) such that

$$\begin{aligned} ess\liminf \limits _{x \rightarrow x_{0}} \Big (\Delta _g \phi (x) - f(x)\Big ) \ge \mu > 0. \end{aligned}$$

Now, we know that there exists \(r_0 > 0\) such that in \(B_{r_0}(x_0)\),

$$\begin{aligned} \nabla u(x) \ne 0 \ \ \ \text { and } \ \ \ \ \Delta _g u(x) > f(x) \ \ a.e. \end{aligned}$$

Let \(m = \inf _{\partial B_{r_0}(x_0)} \vert u - \phi \vert > 0\) and \(\psi = \phi + m\). Since \(A) \Leftrightarrow B)\) we have that \(\psi \) is a weak subsolution of (10.1) and \(u \ge \psi \) on \(\partial B_{r_0}(x_0)\). By comparison principle (see Proposition 5.2 of [5]), \(\psi \le u\) in \(B_{r_0}(x_0)\). However,

$$\begin{aligned} \psi (x_0) = \phi (x_0) + m > u(x_0), \end{aligned}$$

which is a contradiction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braga, J.E.M., Leitão, R.A. & Oliveira, J.E.L. Free boundary theory for singular/degenerate nonlinear equations with right hand side: a non-variational approach. Calc. Var. 59, 86 (2020). https://doi.org/10.1007/s00526-020-01733-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01733-5

Mathematics Subject Classification

Navigation