Skip to main content
Log in

Symmetric positive solutions to nonlinear Choquard equations with potentials

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Existence results for a class of Choquard equations with potentials are established. The potential has a limit at infinity and it is taken invariant under the action of a closed subgroup of linear isometries of \(\mathbb {R}^N\). As a consequence, the positive solution found will be invariant under the same action. Power nonlinearities with exponent greater or equal than two or less than two will be handled. Our results include the physical case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ackermann, N.: On a periodic Schrodinger equation with nonlocal superlinear part. Math. Z. 248, 423–443 (2004)

    Article  MathSciNet  Google Scholar 

  2. Ackermann, N., Clapp, M., Pacella, F.: Alternating sign multibump solutions of nonlinear elliptic equations in expanding tubular domains. Comm. Partial Diff. Equ. 38(5), 751–779 (2013)

    Article  MathSciNet  Google Scholar 

  3. Ambrosetti, A., Colorado, E., Ruiz, D.: Multi-bump solitons to linearly coupled systems of nonlinear Schrodinger equations. Calc. Var. 30, 85–112 (2007)

    Article  MathSciNet  Google Scholar 

  4. Bahri, A., Li, Y.Y.: On a min-max procedure for the existence of a positive solution for certain scalar field equations in \(\mathbb{R}^{N}\). Rev. Mat. Iberoamericana 6(1–2), 1–15 (1990)

    Article  MathSciNet  Google Scholar 

  5. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. existence of a ground state. Arch. Rational Mech. Anal. 82(4), 313–345 (1983)

    Article  MathSciNet  Google Scholar 

  6. Cingolani, S., Clapp, M., Secchi, S.: Multiple solutions to a magnetic nonlinear Choquard equation Z. Angew. Math. Phys. 63, 233–248 (2012)

    Article  MathSciNet  Google Scholar 

  7. Clapp, M., Maia, L.: A positive bound state for an asymptotically linear or superlinear Schrodinger equation. J. Diff. Equ 260, 3173–3192 (2016)

    Article  MathSciNet  Google Scholar 

  8. Clapp, M., Maia, L.: Existence of a positive solution to a nonlinear scalar field equation with zero mass at infinity. Adv. Nonlinear Stud. 18, 745–762 (2018)

    Article  MathSciNet  Google Scholar 

  9. Clapp, M., Maia, L., Pellacci, B.: Positive multipeak solutions to a zero mass problem in exterior domains. Commun. Contempor. Mathemat. 23, 1950062 (22 pp.) (2019)

    MathSciNet  MATH  Google Scholar 

  10. Clapp, M., Salazar, D.: Positive and sign changing solutions to a nonlinear Choquard equation. J. Math. Anal. Appl. 407, 1–15 (2013)

    Article  MathSciNet  Google Scholar 

  11. Clapp, M., Salazar, D.: Multiple sign changing solutions of nonlinear elliptic problems in exterior domains. Adv. Nonlinear Stud. 12, 427–443 (2012)

    Article  MathSciNet  Google Scholar 

  12. d’Avenia, P., Mederski, J., Pomponio, A.: Nonlinear scalar field equation with competing nonlocal term. Nonlinearity 34(8), 5687–5707 (2021)

  13. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  Google Scholar 

  14. Felmer, P., Quaas, A., Tan, J.: Positive solutions of nonlinear Schrodinger equation with the fractional Laplacian. Proc. Roy. Soc. Edinburgh Sect. A 142(6), 1237–1262 (2012)

  15. Ghimenti, M., Van Schaftingen, J.: Nodal solutions for the Choquard equation. J. Funct. Anal. 271, 107–135 (2016)

    Article  MathSciNet  Google Scholar 

  16. Lieb, E.H.: Existence and uniqueness of the minimizing solutions of Choquards nonlinear equation. Studies Appl. Math. 57, 93–105 (1976)

    Article  MathSciNet  Google Scholar 

  17. Lions, P.L.: The concentration-compactness principle in the calculus of variations. the locally compact case. I. Ann. Inst. H. Poincare Anal. Non Lineaire 1, 109–145 (1984)

    Article  MathSciNet  Google Scholar 

  18. Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195, 455–467 (2010)

    Article  MathSciNet  Google Scholar 

  19. Maia, L., Pellacci, B., Schiera, D.: Positive bound states to the nonlinear Choquard equations in the presence of nonsymmetric potentials. Mini. Theory and Appl. 2, 7 (2022)

    MATH  Google Scholar 

  20. Moroz, V., Van Schaftingen, J.: A guide to the Choquard equation. J. fixed point theory appl. 19, 773–813 (2017)

    Article  MathSciNet  Google Scholar 

  21. Moroz, V., Van Schaftingen, J.: Nonexistence and optimal decay of supersolutions to Choquard equations in exterior domains. J. Diff. Equ. 254, 3089–3145 (2013)

    Article  MathSciNet  Google Scholar 

  22. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MathSciNet  Google Scholar 

  23. Palais, R.S.: The principle of symmetric criticality. Comm. Math. Phys. 69, 19–30 (1979)

    Article  MathSciNet  Google Scholar 

  24. Pekar, S.: Untersuchung Uber die Elektronentheorie der Kristalle. Akademie Verlag, Berlin (1954)

    MATH  Google Scholar 

  25. Riesz, M.: Lintegrale de Riemann-Liouville et le probleme de Cauchy. Acta Math. 81, 1–223 (1949)

    Article  MathSciNet  Google Scholar 

  26. Struwe, M.: A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187, 511–517 (1984)

    Article  MathSciNet  Google Scholar 

  27. Szulkin, A., Weth, T.: Ground state solutions for some indefinite variational problems. J. Funct. Anal. 257, 3802–3822 (2009)

    Article  MathSciNet  Google Scholar 

  28. Van Schaftingen, J., Xia, J.: Choquard equations under confining external potentials, Nonlinear Differ. Equ. Appl. , 1–24 (2017)

  29. Wang, J., Qu, M., Xiao, L.: Existence of positive solutions to the nonlinear Choquard equation with competing potentials. Electr. J. Differ. Equ. 63, 1–21 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Wang, T., Yi, T.: Uniqueness of positive solutions of the Choquard type equations. Appl. Anal. 96, 409–417 (2017)

    Article  MathSciNet  Google Scholar 

  31. Xiang, C.L.: Uniqueness and nondegeneracy of ground states for Choquard equations in three dimensions. Calc. Var. Partial Diff. Equ. 134, 25 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Mónica Clapp for inspiring conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliane Maia.

Additional information

Communicated by P. H. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research partially supported by: PRIN-2017-JPCAPN Grant: “Equazioni differenziali alle derivate parziali non lineari”, by project Vain-Hopes within the program VALERE: VAnviteLli pEr la RicErca and by the INdAM-GNAMPA group. L. Maia was partially supported by FAPDF, CAPES, and CNPq grant 309866/2020-0.

Appendix A. Technical Lemma

Appendix A. Technical Lemma

Lemma A.1

(Lemma 4.1 in [8]) Let \(u, v : \mathbb {R}^N \rightarrow \mathbb {R}\) be two continuous functions such that

$$\begin{aligned} u(x) \le C(1+\left| x\right| )^a, \quad v(x) \le C(1+\left| x\right| )^{a'} \end{aligned}$$

as \(\left| x\right| \rightarrow \infty \), where \(a, a'<0\) such that \(a+a'<-N\). Let \(\xi \in \mathbb {R}^N \) such that \(\left| \xi \right| \rightarrow \infty \). We denote \(u_{\xi }(x)=u(x-\xi )\). Then the following asymptotic estimate holds:

$$\begin{aligned} \int _{\mathbb {R}^N} u_{\xi } v\le C \left| \xi \right| ^{\tau } \end{aligned}$$

where \(\tau = \max \{ a, a', a+a' +N\}<0\).

Lemma A.2

(Lemma 3.7 in [3]) Let \(u, v : \mathbb {R}^N \rightarrow \mathbb {R}\) be two positive continuous radial functions such that

$$\begin{aligned} u(x) \sim \left| x\right| ^a e^{-b\left| x\right| }, \quad v(x) \sim \left| x\right| ^{a'} e^{-b'\left| x\right| } \end{aligned}$$

as \(\left| x\right| \rightarrow \infty \), where \(a, a' \in \mathbb {R}\), and \(b, b' >0\). Let \(\xi \in \mathbb {R}^N \) such that \(\left| \xi \right| \rightarrow \infty \). We denote \(u_{\xi }(x)=u(x-\xi )\). Then the following asymptotic estimates hold:

  1. (i)

    If \(b < b'\),

    $$\begin{aligned} \int _{\mathbb {R}^N} u_{\xi } v\sim e^{-b\left| \xi \right| } \left| \xi \right| ^{a}. \end{aligned}$$

    A similar expression holds if \(b > b'\), by replacing a and b with \(a'\) and \(b'\).

  2. (ii)

    If \(b=b'\), suppose that \(a \ge a'\). Then:

    $$\begin{aligned} \int _{\mathbb {R}^N} u_{\xi } v\sim {\left\{ \begin{array}{ll} e^{-b\left| \xi \right| } \left| \xi \right| ^{a+a'+\frac{N+1}{2}} &{} \text { if } a' > -\frac{N+1}{2},\\ e^{-b\left| \xi \right| } \left| \xi \right| ^{a} \log |\xi | &{} \text { if } a' = -\frac{N+1}{2},\\ e^{-b\left| \xi \right| } \left| \xi \right| ^{a}&{} \text { if } a' < -\frac{N+1}{2}. \end{array}\right. } \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maia, L., Pellacci, B. & Schiera, D. Symmetric positive solutions to nonlinear Choquard equations with potentials. Calc. Var. 61, 61 (2022). https://doi.org/10.1007/s00526-021-02169-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02169-1

Mathematics Subject Classification

Navigation