Skip to main content
Log in

Variational aspects of phase transitions with prescribed mean curvature

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the spectrum of phase transitions with prescribed mean curvature in Riemannian manifolds. These phase transitions are solutions to an inhomogeneous semilinear elliptic PDE that give rise to diffuse objects (varifolds) that limit to hypersurfaces, possibly with singularities, whose mean curvature is determined by the “prescribed mean curvature” function and the limiting multiplicity. We establish upper bounds for the eigenvalues of the diffuse problem, as well as the more subtle lower bounds when the diffuse problem converges with multiplicity one. For the latter, we also establish asymptotics that are sharp to order \(o(\varepsilon ^2)\) and \(C^{2,\alpha }\) estimates on multiplicity-one phase transition layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. If V is a smooth multiplicity-one hypersurface, then \(A_{\mathfrak {h}}[V; \Omega ]\) measures the \((n-1)\)-dimensional area of V minus the bulk integral of \({\mathfrak {h}}\) in the region \(\Omega \) enclosed by V. Smooth multiplicity-one critical points \((V; \Omega )\) of this functional will have mean curvature equal to \(2 {\mathfrak {e}}_0^{-1} {\mathfrak {h}}\).

  2. These are all the same assumptions as in [7, Section 2.1], with slightly more regularity on the background metric g to streamline the exposition, and of course the added single-sheeted assumption.

  3. We use a wider cutoff than in [7, 26]. One might also use the cutoff of [7, 26] after analyzing the exponential decay rate of the auxiliary function \({\mathbb {I}}\) defined in (72). We do not pursue this here.

  4. We note that [26, Section 15] only states the \(C^{0,\alpha }_\varepsilon \) estimates. Higher order estimates were derived in [26, Section 13] in the form of \(W^{1,p}_\varepsilon \) estimates, and were allured to in [27, Section 7] in the form of \(C^{1,\alpha }_\varepsilon \) estimates.

  5. A key difference with [1] is that we are trying to understand an arbitrary solution, not a particular solution with tailored asymptotics.

References

  1. Alikakos, N.D., Fusco, G., Stefanopoulos, V.: Critical spectrum and stability of interfaces for a class of reaction-diffusion equations. J. Differ. Equ. 126(1), 106–167 (1996)

    Article  MathSciNet  Google Scholar 

  2. Bellettini, C., Chodosh, O., Wickramasekera, N.: Curvature estimates and sheeting theorems for weakly stable CMC hypersurfaces. Adv. Math. 352, 133–157 (2019)

    Article  MathSciNet  Google Scholar 

  3. Bellettini, C., Wickramasekera, N.: Stable CMC integral varifolds of codimension \(1\): regularity and compactness, (2018). arXiv: 1802.00377

  4. Bellettini, C., Wickramasekera, N.: The inhomogeneous allen–cahn equation and the existence of prescribed-mean-curvature hypersurfaces, (2020). arXiv: 2010.05847

  5. Benci, V., Nardulli, S., Acevedo, L. E. O., Piccione, P.: Lusternik-schnirelman and morse theory for the van der waals-cahn-hilliard equation with volume constraint, (2020). arXiv: 2007.07024

  6. Caju, R., Gaspar, P.: Solutions of the allen-cahn equation on closed manifolds in the presence of symmetry, (2019). arXiv: 1906.05938

  7. Chodosh, O., Mantoulidis, C.: Minimal surfaces and the Allen-Cahn equation on 3-manifolds: index, multiplicity, and curvature estimates. Ann. Math. 191(1), 213–328 (2020)

    Article  MathSciNet  Google Scholar 

  8. del Pino, M., Kowalczyk, M., Wei, J., Yang, J.: Interface foliation near minimal submanifolds in Riemannian manifolds with positive Ricci curvature. Geom. Funct. Anal. 20(4), 918–957 (2010)

    Article  MathSciNet  Google Scholar 

  9. Gaspar, P.: The second inner variation of energy and the Morse index of limit interfaces. J. Geom. Anal. 30(1), 69–85 (2020)

    Article  MathSciNet  Google Scholar 

  10. Gaspar, P., Guaraco, M.A.: The Allen-Cahn equation on closed manifolds. Calc. Var. Partial Differ. Equ. 57(4), 1–42 (2018)

    Article  MathSciNet  Google Scholar 

  11. Guaraco, M.A.M.: Min-max for phase transitions and the existence of embedded minimal hypersurfaces. J. Differ. Geom. 108(1), 91–133 (2018)

    Article  MathSciNet  Google Scholar 

  12. Guaraco, M.A.M., Marques, F. C., and Néves, A.: Multiplicity one and strictly stable allen-cahn minimal hypersurfaces, (2019). arXiv: 1912.08997

  13. Hiesmayr, F.: Spectrum and index of two-sided Allen-Cahn minimal hypersurfaces. Comm. Partial Differ. Equ. 43(11), 1541–1565 (2018)

    Article  MathSciNet  Google Scholar 

  14. Hutchinson, J.E., Tonegawa, Y.: Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory. Calc. Var. Partial Differ. Equ. 10(1), 49–84 (2000)

    Article  MathSciNet  Google Scholar 

  15. Ketover, D., Liokumovich, Y.: On the existence of closed \({C}^{1,1}\) curves of constant curvature, (2019). arXiv: 1810.09308

  16. Mantoulidis, C.: Allen-Cahn min-max on surfaces. J. Differ. Geom. 117(1), 93–135 (2021)

    Article  MathSciNet  Google Scholar 

  17. Marques, F.C., Neves, A.: Morse index and multiplicity of min-max minimal hypersurfaces. Camb. J. Math. 4(4), 463–511 (2016)

    Article  MathSciNet  Google Scholar 

  18. Marques, F.C., Neves, A.: Morse index of multiplicity one min-max minimal hypersurfaces, (2019). arXiv: 1803.04273

  19. Pacard, F.: The role of minimal surfaces in the study of the Allen-Cahn equation. Geometric Anal.: Partial Differ. Equ. Surf. 570, 137–163 (2012)

    Article  MathSciNet  Google Scholar 

  20. Pacard, F., Ritoré, M.: From constant mean curvature hypersurfaces to the gradient theory of phase transitions. J. Differ. Geom. 64(3), 359–423 (2003)

    Article  MathSciNet  Google Scholar 

  21. Röger, M., Tonegawa, Y.: Convergence of phase-field approximations to the Gibbs-Thomson law. Calc. Var. Partial Differ. Equ. 32(1), 111–136 (2008)

    Article  MathSciNet  Google Scholar 

  22. Simon, L.: Lectures on geometric measure theory. Proceedings of the Centre for Mathematical Analysis, vol. 3. Australian National University. Australian National University, Centre for Mathematical Analysis, Canberra (1983)

  23. Tonegawa, Y.: On stable critical points for a singular perturbation problem. Comm. Anal. Geom. 13(2), 439–459 (2005)

    Article  MathSciNet  Google Scholar 

  24. Tonegawa, Y., Wickramasekera, N.: Stable phase interfaces in the van der Waals-Cahn-Hilliard theory. J. Reine Angew. Math. 668, 191–210 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Wang, K.: A new proof of Savin’s theorem on Allen-Cahn equations. J. Eur. Math. Soc. (JEMS) 19(10), 2997–3051 (2017)

    Article  MathSciNet  Google Scholar 

  26. Wang, K., Wei, J.: Finite Morse index implies finite ends. Comm. Pure Appl. Math. 72(5), 1044–1119 (2019)

    Article  MathSciNet  Google Scholar 

  27. Wang, K., Wei, J.: Second order estimate on transition layers. Adv. Math. 358, 106856 (2019)

    Article  MathSciNet  Google Scholar 

  28. White, B.: Generic transversality of minimal submanifolds and generic regularity of two-dimensional area-minimizing integral currents, (2019). arXiv: 1901.05148

  29. Wickramasekera, N.: A regularity and compactness theory for immersed stable minimal hypersurfaces of multiplicity at most 2. J. Differ. Geom. 80(1), 79–173 (2008)

    Article  MathSciNet  Google Scholar 

  30. Wickramasekera, N.: A general regularity theory for stable codimension 1 integral varifolds. Ann. Math. 179(3), 843–1007 (2014)

    Article  MathSciNet  Google Scholar 

  31. Zhou, X.: On the multiplicity one conjecture in min-max theory. Ann. Math. 192(3), 767–820 (2020)

    Article  MathSciNet  Google Scholar 

  32. Zhou, X., Zhu, J.: Existence of hypersurfaces with prescribed mean curvature I–generic min-max. Camb. J. Math. 8(2), 311–362 (2020)

    Article  MathSciNet  Google Scholar 

  33. Zhou, X., Zhu, J.J.: Min-max theory for constant mean curvature hypersurfaces. Invent. Math. 218(2), 441–490 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge Constante Bellettini, Otis Chodosh, and Xin Zhou for helpful conversations on constant mean curvature hypersurfaces. The author was supported in part by NSG Grant No. DMS-1905165/2050120/2147521.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Mantoulidis.

Additional information

Communicated by Manuel Del Pino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Derivation of (66) and (79)

In what follows, (53) gets used repeatedly though implicitly when obtaining \(O_{1,0,\alpha ,\varepsilon }\) bounds.

We project (65) onto \(\Gamma \) by fixing \(y \in B_{19}^\Gamma \), dotting with \({\overline{{\mathbb {H}}}}_\varepsilon '(y, z)\) and integrating over z. We start with the left hand side. We differentiate \(\phi \perp {\overline{{\mathbb {H}}}}_\varepsilon '\) along y and use (54) to get:

$$\begin{aligned} \int _{\mathbf {R}}\varepsilon ^2 (\Delta _{g_z} \phi ) {\overline{{\mathbb {H}}}}_\varepsilon ' \, dz&= \int _{\mathbf {R}}\varepsilon ^2 (\Delta _\Gamma \phi ) {\overline{{\mathbb {H}}}}_\varepsilon ' \, dz + \int _{\mathbf {R}}\varepsilon ^2 (\Delta _{g_z} \phi - \Delta _\Gamma \phi ) {\overline{{\mathbb {H}}}}_\varepsilon ' \, dz \nonumber \\&= - \int _{\mathbf {R}}\varepsilon ^2 \phi (\Delta _\Gamma {\overline{{\mathbb {H}}}}_\varepsilon ') \, dz - \int _{\mathbf {R}}\varepsilon ^2 (\nabla _\Gamma \phi ) \cdot (\nabla _\Gamma {\overline{{\mathbb {H}}}}_\varepsilon ') \, dz \nonumber \\&\qquad + \int _{\mathbf {R}}\varepsilon ^2 (\Delta _{g_z} \phi - \Delta _\Gamma \phi ) {\overline{{\mathbb {H}}}}_\varepsilon ' \, dz \nonumber \\&= \int _{\mathbf {R}}\phi (\varepsilon (\Delta _\Gamma h) {\overline{{\mathbb {H}}}}_\varepsilon '' - |\nabla _\Gamma h|^2 {\overline{{\mathbb {H}}}}_\varepsilon ''') \, dz + \int _{\mathbf {R}}\varepsilon (\nabla _\Gamma \phi ) \cdot (\nabla _\Gamma h) {\overline{{\mathbb {H}}}}_\varepsilon '' \, dz \nonumber \\&\qquad + \int _{\mathbf {R}}\varepsilon ^2 (\Delta _{g_z} \phi - \Delta _\Gamma \phi ) {\overline{{\mathbb {H}}}}_\varepsilon ' \, dz \nonumber \\&= \varepsilon (\Delta _\Gamma h) \int _{\mathbf {R}}\phi {\overline{{\mathbb {H}}}}_\varepsilon '' \, dz + \varepsilon \cdot O_{1,0,\alpha ,\varepsilon }(\phi ) (O_{1,0,\alpha ,\varepsilon }(\nabla _\Gamma h))^2 \nonumber \\&\qquad + \varepsilon \cdot O_{1,0,\alpha ,\varepsilon }(\varepsilon \nabla _\Gamma \phi ) \cdot O_{1,0,\alpha ,\varepsilon }(\nabla _\Gamma h) \nonumber \\&\qquad + \varepsilon ^2 \cdot O_{1,0,\alpha ,\varepsilon }(\varepsilon ^2 \nabla ^2_\Gamma \phi , \varepsilon \nabla _\Gamma \phi ). \end{aligned}$$
(113)

Next, integrating by parts yields and using \(\phi \perp {\overline{{\mathbb {H}}}}_\varepsilon '\) again:

$$\begin{aligned} \int _{\mathbf {R}}\varepsilon ^2 H_z (\partial _z \phi ) {\overline{{\mathbb {H}}}}_\varepsilon ' \, dz&= - \int _{\mathbf {R}}\varepsilon H_z \phi {\overline{{\mathbb {H}}}}_\varepsilon '' \, dz - \int _{\mathbf {R}}\varepsilon ^2 (\partial _z H_z) \phi {\overline{{\mathbb {H}}}}_\varepsilon ' \, dz \nonumber \\&= - \int _{\mathbf {R}}\varepsilon (H_\Gamma \phi + O(1) z) {\overline{{\mathbb {H}}}}_\varepsilon '' \, dz - \int _{\mathbf {R}}\varepsilon ^2 (\partial _z H_z) \phi {\overline{{\mathbb {H}}}}_\varepsilon ' \, dz \nonumber \\&= - \varepsilon H_\Gamma \int _{\mathbf {R}}\phi {\overline{{\mathbb {H}}}}_\varepsilon '' \, dz + \varepsilon ^3 \cdot O_{1,0,\alpha ,\varepsilon }(\phi ). \end{aligned}$$
(114)

Next, integrating by parts twice yields:

$$\begin{aligned} \int _{\mathbf {R}}\big [ \varepsilon ^2 (\partial _z^2 \phi ) - W''({\overline{{\mathbb {H}}}}_\varepsilon ) \phi \big ] {\overline{{\mathbb {H}}}}_\varepsilon ' \, dz = \varepsilon ^3 \cdot O_{1,0,\alpha ,\varepsilon }(\phi ). \end{aligned}$$
(115)

We move on to the right hand side of (65). We have:

$$\begin{aligned} \int _{\mathbf {R}}\varepsilon {\mathfrak {h}}{\overline{{\mathbb {H}}}}_\varepsilon ' \, dz&= \int _{\mathbf {R}}\varepsilon ({\mathfrak {h}}(\cdot , 0) + (\partial _z {\mathfrak {h}})(\cdot , 0) z + O_{C^{1,\alpha }_\varepsilon }(1) z^2) {\overline{{\mathbb {H}}}}_\varepsilon ' \, dz \nonumber \\&= 2 \varepsilon ^2 {\mathfrak {h}}(\cdot , 0) + 2 \varepsilon ^2 (\partial _z {\mathfrak {h}}(\cdot , 0)) h + O_{1,0,\alpha ,\varepsilon }(\varepsilon ^4). \end{aligned}$$
(116)

Next:

$$\begin{aligned} \int _{\mathbf {R}}\varepsilon (H_\Gamma - \Delta _\Gamma h) ({\overline{{\mathbb {H}}}}_\varepsilon ')^2 \, dz = \varepsilon ^2 {\mathfrak {e}}_0(H_\Gamma - \Delta _\Gamma h). \end{aligned}$$
(117)

Next:

$$\begin{aligned} \int _{\mathbf {R}}\varepsilon (|{{\,\mathrm{\mathrm {I\!I}}\,}}_\Gamma |^2 + {{\,\mathrm{Ric}\,}}({\varvec{n}}_\Gamma , {\varvec{n}}_\Gamma )) z {\overline{{\mathbb {H}}}}_\varepsilon ' \, dz = 2 \varepsilon ^2 (|{{\,\mathrm{\mathrm {I\!I}}\,}}_\Gamma |^2 + {{\,\mathrm{Ric}\,}}({\varvec{n}}_\Gamma , {\varvec{n}}_\Gamma )) h. \end{aligned}$$
(118)

For now, we estimate:

$$\begin{aligned} \int _{\mathbf {R}}\tfrac{1}{2} W'''({\overline{{\mathbb {H}}}}_\varepsilon ) \phi ^2 {\overline{{\mathbb {H}}}}_\varepsilon ' \, dz = \varepsilon \cdot (O_{1,0,\alpha ,\varepsilon }(\phi ))^2, \end{aligned}$$
(119)

though we will refine this estimate later once we get a more precise form of \(\phi \). Finally:

$$\begin{aligned}&\int _{\mathbf {R}}\big [ (O_{1,0,\alpha ,\varepsilon }(\phi ))^3 + O_{1,0,\alpha ,\varepsilon }(\varepsilon \nabla _\Gamma ^2 h, \nabla _\Gamma h) z {\overline{{\mathbb {H}}}}_\varepsilon ' + (O_{1,0,\alpha ,\varepsilon }(\nabla _\Gamma h))^2 {\overline{{\mathbb {H}}}}_\varepsilon '' + O_{1,0,\alpha ,\varepsilon }(\varepsilon ^3) \big ] {\overline{{\mathbb {H}}}}_\varepsilon ' \, dz \nonumber \\&\qquad = \varepsilon \cdot (O_{1,0,\alpha ,\varepsilon }(\phi ))^3 + \varepsilon ^2 \cdot O_{1,0,\alpha ,\varepsilon }(\varepsilon \nabla _\Gamma ^2 h, \nabla _\Gamma h) + \varepsilon \cdot (O_{1,0,\alpha ,\varepsilon }(\nabla _\Gamma h))|^2 + O_{1,0,\alpha ,\varepsilon }(\varepsilon ^4). \end{aligned}$$
(120)

At this point, (66) follows from combining (113), (114), (115), (116), (117), (118), (119), (120), and finally estimating h by \(\phi \) as in [26, Lemma 9.6].

Finally, let us assume we have a more refined ansatz for \(\phi \), namely:

$$\begin{aligned} \phi = {\hat{\phi }} + \varepsilon {\mathfrak {h}}{\overline{{\mathbb {I}}}}_\varepsilon \end{aligned}$$

where \({\hat{\phi }} = O_{1,0,\alpha ,\varepsilon }(\varepsilon ^2)\). Then, we can replace (119) by

$$\begin{aligned}&\int _{\mathbf {R}}\tfrac{1}{2} W'''({\overline{{\mathbb {H}}}}_\varepsilon ) \phi ^2 {\overline{{\mathbb {H}}}}_\varepsilon ' \, dz \nonumber \\&\qquad = \varepsilon ^2 \int _{\mathbf {R}}\tfrac{1}{2} W'''({\overline{{\mathbb {H}}}}_\varepsilon ) {\mathfrak {h}}^2 {\overline{{\mathbb {I}}}}_\varepsilon ^2 {\overline{{\mathbb {H}}}}_\varepsilon ' \, dz + O_{1,0,\alpha ,\varepsilon }(\varepsilon ^4) \nonumber \\&\qquad = \varepsilon ^2 \int _{\mathbf {R}}\tfrac{1}{2} W'''({\overline{{\mathbb {H}}}}_\varepsilon ) ({\mathfrak {h}}(\cdot , 0) + O_{1,0,\alpha ,\varepsilon }(1) z)^2 {\overline{{\mathbb {I}}}}_\varepsilon ^2 {\overline{{\mathbb {H}}}}_\varepsilon ' \, dz + O_{C^{0,\alpha }_\varepsilon }(\varepsilon ^4) \nonumber \\&\qquad = \varepsilon ^2 {\mathfrak {h}}(\cdot , 0)^2 \int _{\mathbf {R}}\tfrac{1}{2} W'''({\overline{{\mathbb {H}}}}_\varepsilon ) {\overline{{\mathbb {I}}}}_\varepsilon ^2 {\overline{{\mathbb {H}}}}_\varepsilon ' \, dz + O_{1,0,\alpha ,\varepsilon }(\varepsilon ^4) = O_{1,0,\alpha ,\varepsilon }(\varepsilon ^4), \end{aligned}$$
(121)

where in the last step we’ve used (68) and the fact that, by parity,

$$\begin{aligned} \int _{\mathbf {R}}W'''({\mathbb {H}}) {\mathbb {I}}^2 {\mathbb {H}}' \, dz = 0. \end{aligned}$$

Now, (79) follows from the same equations, with (121) replacing (119).

B Derivation of (68), (70), (78)

This section is meant to simplify and condense the exposition in [26, Sections 11-13] by exploiting the multiplicity-one setting. It is borrowed from collaborative notes written with O. Chodosh. In this appendix we will assume, without loss of generality, that \(W''(\pm 1) = 2\).

Lemma 15

Consider \(w \in C^{2}({\mathbf {R}}^{n})\) and \(f \in C^{0}({\mathbf {R}}^{n-1})\) so that, for \((y, z) \in {\mathbf {R}}^{n-1} \times {\mathbf {R}}= {\mathbf {R}}^n\),

$$\begin{aligned} \Delta _{{\mathbf {R}}^{n-1}} w(y,z) + \partial _{z}^{2} w(y,z) - W''({\mathbb {H}}(z)) w(y,z) = f(y){\mathbb {H}}'(z). \end{aligned}$$

Then, there is some \(c \in C^{2}({\mathbf {R}}^{n-1})\) so that \(w=c(y){\mathbb {H}}'(z)\).

Proof

We mimic [19, Lemma 3.7]. Write

$$\begin{aligned} w(y,z) = c(y) {\mathbb {H}}'(z) + {\bar{w}}(y,z) \end{aligned}$$

where \(\int _{-\infty }^{\infty } w(z,y) {\mathbb {H}}'(z) dz = 0\) for all \(y\in {\mathbb {R}}^{n-1}\). We thus find that

$$\begin{aligned} {\mathbb {H}}'(z) \Delta _{{\mathbf {R}}^{n-1}} c(y) + (\partial ^{2}_{z} {\bar{w}}(y,z) - W''({\mathbb {H}}(z)) {\bar{w}}(y,z) + \Delta _{{\mathbf {R}}^{n-1}} {\bar{w}}(y,z)) = f(y){\mathbb {H}}'(z). \end{aligned}$$

Multiplying by \({\mathbb {H}}'(z)\) and integrating, we find that \(\Delta _{{\mathbf {R}}^{n-1}} c(y) = f(y)\), and so

$$\begin{aligned} \partial ^{2}_{z} {\bar{w}}(y,z) - W''({\mathbb {H}}(z)) {\bar{w}}(y,z) + \Delta _{{\mathbf {R}}^{n-1}} {\bar{w}}(y,z) = 0. \end{aligned}$$

At this point, the proof that \({\bar{w}} = 0\) is identical to [19, Lemma 3.7]. \(\square \)

Lemma 16

Fix \(\sigma \in (0,1)\). Then, we can choose \(L>0\) and \(C>0\) depending on \(\sigma \), and \(K>0\) sufficiently large depending only on W with the following property. Suppose that

$$\begin{aligned} \varepsilon ^{2} (\Delta _{\Gamma } \psi + \partial ^{2}_{z}\psi ) - W''({\overline{{\mathbb {H}}}}_\varepsilon ) \psi = \varepsilon f_{1}(y) {\overline{{\mathbb {H}}}}_{\varepsilon }'(y,z) + f_{2}(y,z) + \varepsilon D_{i} f_{3}^{(i)}(y,z) \end{aligned}$$
(122)

on \(B_{r+2L\varepsilon }^{\Gamma } \times {\mathbf {I}}_\varepsilon \). Then, for \(\varepsilon >0\) sufficiently small, either

$$\begin{aligned} \Vert \psi \Vert _{C^{0}(B_{r}^\Gamma \times {\mathbf {I}}_{\varepsilon })} \le 2 {\mathbb {H}}'(0) {\mathfrak {e}}_0^{-1} \sup _{y\in B^{\Gamma }_{r+2L\varepsilon }} \left| \int _{-\varepsilon K}^{\varepsilon K} \psi (y,z) {\overline{{\mathbb {H}}}}'_{\varepsilon }(z-h(y)) \, dz \right| \end{aligned}$$

or

$$\begin{aligned} \Vert \psi \Vert _{C^{0}(B_{r}^{\Gamma } \times {\mathbf {I}}_\varepsilon )}&\le \sigma \left( \Vert \psi \Vert _{C^{1}_{\varepsilon }(B_{r+2L\varepsilon }^{\Gamma } \times {\mathbf {I}}_\varepsilon )} + \Vert f_{1} \Vert _{C^{0,\alpha }_{\varepsilon }(B_{r+2L\varepsilon }^{\Gamma })} \right) \\&\qquad + C \left( \Vert f_{2}\Vert _{C^{0}(B_{r+2L\varepsilon }^{\Gamma } \times {\mathbf {I}}_\varepsilon )} + \Vert \mathbf {f}_{3} \Vert _{C^{0,\alpha }_{\varepsilon }(B_{r+2L\varepsilon }^{\Gamma } \times {\mathbf {I}}_\varepsilon )} + \Vert \psi \Vert _{C^0(B_{r}^{\Gamma } \times {\mathbf {J}}_{\varepsilon ,L})} \right) , \end{aligned}$$

where \({\mathbf {J}}_{\varepsilon ,L}\) denotes the points of \({\mathbf {I}}_\varepsilon \) that are within \(\varepsilon L\) of \(\partial {\mathbf {I}}_\varepsilon \).

Proof

First, choose \({\tilde{\chi }} : B_{r+2L\varepsilon }^{\Gamma }\rightarrow [0,1]\) a cutoff function that is 1 on \(B_{r}^{\Gamma }\) and has support in \(B_{r+ L\varepsilon }^{\Gamma }\). We can arrange so that \(\varepsilon L |\nabla _{\Gamma } {\tilde{\chi }}| + \varepsilon ^{2}L^{2} |\nabla ^{2}_{\Gamma } {\tilde{\chi }}|^{2} = O(1)\). Now, by replacing \(\psi \) by \({\tilde{\chi }} \psi \) and absorbing the resulting error terms into \(f_{2}\), it is clear that it suffices to prove that

$$\begin{aligned} \Vert \psi \Vert _{C^{0}(B_{r}^{\Gamma } \times {\mathbf {I}}_\varepsilon )}&\le \sigma \Vert f_{1} \Vert _{C^{0,\alpha }_{\varepsilon }(B_{r+2L\varepsilon }^{\Gamma } \times {\mathbf {I}}_\varepsilon )} \nonumber \\&\qquad + C \left( \Vert f_{2}\Vert _{C^{0}(B_{r+2L\varepsilon }^{\Gamma } \times {\mathbf {I}}_\varepsilon )} + \Vert \mathbf {f}_{3} \Vert _{C^{0,\alpha }_{\varepsilon }(B_{r+2L\varepsilon }^{\Gamma } \times {\mathbf {I}}_\varepsilon )} + \Vert \psi \Vert _{C^0(B_r^\Gamma \times {\mathbf {J}}_{\varepsilon ,L})} \right) \end{aligned}$$
(123)

assuming that \(\psi \) is supported in \(B^{\Gamma }_{r+\frac{1}{2} L\varepsilon }\times {\mathbf {I}}_{\varepsilon }\) and satisfies (122) and

$$\begin{aligned} \sup _{y\in B^{\Gamma }_{r+2L\varepsilon }} \left| \int _{-\varepsilon K}^{\varepsilon K} \psi (y,z) {\overline{{\mathbb {H}}}}'_{\varepsilon }(z-h(y)) \, dz \right| < \frac{1}{2} {\mathbb {H}}'(0)^{-1} {\mathfrak {e}}_0\Vert \psi \Vert _{C^{0}(B^\Gamma _{r} \times {\mathbf {I}}_{\varepsilon })}. \end{aligned}$$
(124)

Assume, for contradiction, that (123) fails. Then, there are \(C,L\rightarrow \infty \) as \(\varepsilon \rightarrow 0\) so that

$$\begin{aligned} \Vert \psi \Vert _{C^{0}(B_{r}^{\Gamma } \times {\mathbf {I}}_\varepsilon )}&\ge \sigma \Vert f_{1} \Vert _{C^{0,\alpha }_{\varepsilon }(B_{r+2L\varepsilon }^{\Gamma } \times {\mathbf {I}}_\varepsilon )} \\&\qquad + C \left( \Vert f_{2}\Vert _{C^{0}(B_{r+2L\varepsilon }^{\Gamma } \times {\mathbf {I}}_\varepsilon )} + \Vert \mathbf {f}_{3} \Vert _{C^{0,\alpha }_{\varepsilon }(B_{r+2L\varepsilon }^{\Gamma } \times {\mathbf {I}}_\varepsilon )} + \Vert \psi \Vert _{C^0(B_r^\Gamma \times {\mathbf {J}}_{\varepsilon ,L})} \right) . \end{aligned}$$

Choose \({\bar{x}} = ({\bar{y}},{\bar{z}}) \in \overline{B_{r}^{\Gamma }\times {\mathbf {I}}_{\varepsilon }}\) attaining \(\Vert \psi \Vert _{C^{0}(B_{r}^{\Gamma } \times {\mathbf {I}}_\varepsilon )}\). Set \({\tilde{z}} = \varepsilon ^{-1}{\bar{z}}\). We first assume that \({\tilde{z}} \rightarrow {\hat{z}}\) as \(\varepsilon \rightarrow 0\). The case that \({\tilde{z}}\) is unbounded as \(\varepsilon \rightarrow 0\) follows from a similar, but simpler argument, as we describe below. Dividing the equation by \(\pm \Vert \psi \Vert _{C^{0}(B_{r}^{\Gamma } \times {\mathbf {I}}_\varepsilon )}\) and rescaling around \({\bar{x}}\) to scale \(\varepsilon \) (labeling rescaled quantities with a tilde), we find that \({\tilde{\psi }}(0) = 1\), \(\Vert {\tilde{\psi }}\Vert _{C^{0}(B_{L})} = 1\),

$$\begin{aligned} \Delta _{{\tilde{\Gamma }}} {\tilde{\psi }} + \partial ^{2}_{z}{\tilde{\psi }} - W''(\tilde{{\overline{{\mathbb {H}}}}}) {\tilde{\psi }} = {\tilde{f}}_{1}(y) \tilde{{\overline{{\mathbb {H}}}}}'(z-{\tilde{z}}-\varepsilon ^{-1}{\tilde{h}}(y)) + {\tilde{f}}_{2}(y,z) + D_{i} {\tilde{f}}_{3}^{(i)}(y,z), \end{aligned}$$

on \(B_{L}\), and finally

$$\begin{aligned} \Vert {\tilde{f}}_{1} \Vert _{C^{0,\alpha }(B_{L})} \le \sigma ^{-1}, \text { and } \Vert {\tilde{f}}_{2}\Vert _{C^{0}(B_{L})} + \Vert \tilde{f}_{3} \Vert _{C^{0,\alpha }_{\varepsilon }(B_{L})} = o(1). \end{aligned}$$

Hence, \({\tilde{f}}_{2}\rightarrow 0\) in \(C^{0}(B_{L})\) and \({\tilde{f}}_{3}^{(i)}\rightarrow 0\) in \(C^{0,\alpha }(B_{L})\). Moreover, \({\tilde{f}}_{1}\) is bounded in \(C^{0,\alpha }(B_{L})\). We can thus find \({\hat{f}}_{1}\in C^{0,\alpha }({\mathbf {R}}^{n-1})\) so that \({\tilde{f}}_{1}\rightarrow {\hat{f}}_{1}\) in \(C^{0,\alpha '}_{\text {loc}}({\mathbf {R}}^{n-1})\) for \(\alpha ' < \alpha \).

Similarly, by \(C^{1,\alpha }\)-Schauder estimates we see that \({\tilde{\psi }}\) is uniformly bounded in \(C^{1,\alpha }\) on compact subsets of \({\mathbf {R}}^{n}\). Thus, there is \({\hat{\psi }}\in C^{1,\alpha }_{\text {loc}}({\mathbf {R}}^{n})\cap L^{\infty }({\mathbf {R}}^{n})\) so that \({\tilde{\psi }} \rightarrow {\hat{\psi }}\) in \(C^{1,\alpha '}_{\text {loc}}({\mathbf {R}}^{n})\). Integrating by parts against a test function, we see that \({\hat{\psi }}\) weakly solves

$$\begin{aligned} \Delta _{{\mathbf {R}}^{n-1}} {\hat{\psi }} + \partial ^{2}_{z} {\hat{\psi }} - W''({\mathbb {H}}(z-{\tilde{z}})) {\hat{\psi }} = {\hat{f}}_{1}(y) {\mathbb {H}}'(z-{\tilde{z}}). \end{aligned}$$

Schauder theory implies that \({\hat{\psi }} \in C^{2,\alpha }({\mathbf {R}}^{n})\). By Lemma 15, we have that \({\hat{\psi }} = c(y) {\mathbb {H}}'(z-{\hat{z}})\). Because \({\hat{\psi }}(0) = 1 = \Vert {\hat{\psi }}\Vert _{L^{\infty }({\mathbf {R}}^{n})}\), we see that \({\hat{z}} =0\) and \(c(0) = {\mathbb {H}}'(0)^{-1}\). Thus, we see that

$$\begin{aligned} \int _{-K}^{K}{\hat{\psi }}(0,z) {\mathbb {H}}'(z) dz = {\mathbb {H}}'(0)^{-1} {\mathfrak {e}}_0+ O(e^{-\sqrt{2}K}) \end{aligned}$$

Returning to \(\psi \), we thus find that

$$\begin{aligned} \sup _{y\in B^{\Gamma }_{r+2L\varepsilon }} \left| \int _{-\varepsilon K}^{\varepsilon K} \psi (y,z) {\overline{{\mathbb {H}}}}'_{\varepsilon }(z-h(y)) dz \right| \ge \left( {\mathbb {H}}'(0)^{-1} {\mathfrak {e}}_0+ O(e^{-\sqrt{2}K}) + o(1) \right) \Vert \psi \Vert _{C^{0}(B_{r}^\Gamma \times {\mathbf {I}}_{\varepsilon })} \end{aligned}$$

as \(\varepsilon \rightarrow 0\). Taking K sufficiently large this contradicts (124) for \(\varepsilon \) sufficiently small.

Finally, if the case that \({\tilde{z}}\rightarrow \infty \), then repeating the same rescaling as above (but using \({\mathbb {H}}(t)\rightarrow \pm 1\) as \(t\rightarrow \pm \infty \)), we find \({\hat{\psi }} \in C^{2,\alpha }_{\text {loc}}({\mathbf {R}}^{n})\cap L^{\infty }({\mathbf {R}}^{n})\), with \({\hat{\psi }}(0) = 1\) and so that

$$\begin{aligned} \Delta _{{\mathbf {R}}^{n}}{\hat{\psi }} - W''(\pm 1) {\hat{\psi }} = 0. \end{aligned}$$

Because \({\hat{\psi }}\) attains its maximum at 0, we see that \({\hat{\psi }} \equiv 0\), a contradiction. \(\square \)

We note how the first alternative of Lemma 16 can never apply to \(\phi \), provided K is chosen sufficiently large. Indeed, it follows from (60) that

$$\begin{aligned} \left| \int _{-\varepsilon K}^{\varepsilon K} \phi (y, z) {\overline{{\mathbb {H}}}}'_\varepsilon (y, z) \, dz \right| = \left| \int _{{\mathbf {I}}_{\varepsilon } \setminus [-\varepsilon K, \varepsilon K]} \phi (y, z) {\overline{{\mathbb {H}}}}'_\varepsilon (y, z) \, dz \right| \le C e^{-\sqrt{2}K} \Vert \phi (y, \cdot ) \Vert _{C^0({\mathbf {I}}_\varepsilon )}.\nonumber \\ \end{aligned}$$
(125)

Therefore, for sufficiently large (but fixed) choices of K, the second alternative of Lemma 16 must always hold when \(\psi = \phi \).

Let us use this fact to prove (68). We first note that (65) and (64) imply

$$\begin{aligned} \varepsilon ^2 \Delta \phi - W''({\overline{{\mathbb {H}}}}_\varepsilon ) \phi&= - \varepsilon (H_\Gamma - \Delta _\Gamma h) \overline{{\mathbb {H}}}_\varepsilon ' + O_{1,0,\alpha ,\varepsilon }(\varepsilon {\mathfrak {h}}, \varepsilon ^2) + (O_{1,0,\alpha ,\varepsilon }(\phi ))^2 \nonumber \\&\qquad + (O_{1,0,\alpha ,\varepsilon }(\varepsilon \nabla _\Gamma ^2 h, \nabla _\Gamma h))^2 \nonumber \\&= - \varepsilon (H_\Gamma - \Delta _\Gamma h) \overline{{\mathbb {H}}}_\varepsilon ' + O_{1,0,\alpha ,\varepsilon }(\varepsilon ) + (O_{1,0,\alpha ,\varepsilon }(\varepsilon ^2 \nabla ^2_\Gamma \phi , \varepsilon \nabla _\Gamma \phi , \phi ))^2, \end{aligned}$$
(126)

where the second equation follows from the first from our bounds on the prescribed function \({\mathfrak {h}}\) our ability to control the height adjustment h in terms of \(\phi \) ( [26, Lemma 9.6]).

Fix \(\sigma \in (0, 1)\). We apply Lemma 16 in \(B_{19}^\Gamma \times {\mathbf {I}}_\varepsilon \) to get a \(C^0\) estimate on \(\phi \) in \(B_{19 - 2 \varepsilon L}^\Gamma \times {\mathbf {I}}_\varepsilon \) (using (55) to treat \(\varepsilon ^2 (\Delta - \Delta _\Gamma - \partial _z^2) \phi \) as a right hand side term), which can be enlarged to a \(C^0\) estimate on \(B_{19 - 2 \varepsilon L}^\Gamma \times (-1, 1)\) with at most an \(O(\varepsilon )\) error using the decay of \(\phi \) off \(\Gamma \). Then use Schauder theory on (65), (66) and again [26, Lemma 9.6], and absorbing the terms that are quadratic in \(\phi \) we get:

$$\begin{aligned} \Vert \phi \Vert _{C^{2,\alpha }_\varepsilon (B_{19 - 4 \varepsilon L}^\Gamma \times (-1,1))} + \Vert H_\Gamma - \Delta _\Gamma h \Vert _{C^{0,\alpha }_\varepsilon (B^\Gamma _{19-4\varepsilon L})} \nonumber \\ \le \sigma (\Vert \phi \Vert _{C^{2,\alpha }_\varepsilon (B_{19}^\Gamma \times (-1,1))} + \Vert H_\Gamma - \Delta _\Gamma h \Vert _{C^{0,\alpha }_\varepsilon (B^\Gamma _{19})}) + C' \varepsilon , \end{aligned}$$
(127)

for a fixed \(C' > 0\). Iterating this procedure on \(B_{19 - 4k \varepsilon L}^\Gamma \times {\mathbf {I}}_\varepsilon \) for \(k = 1, \ldots , M |\log \varepsilon |\), where M depends on \(\sigma \in (0, 1)\) but not \(\varepsilon \), yields the \(\phi \) estimate in (68) and thus also (69).

We move on to verifying (70). Differentiating (65) in the directions parallel to \(\Gamma \) (i.e., in \(y_i\) in Fermi coordinates) we see similarly to (126) that:

$$\begin{aligned} \varepsilon ^2 \Delta (\varepsilon \partial _{y_i} \phi ) - W''({\overline{{\mathbb {H}}}}_\varepsilon ) (\varepsilon \partial _{y_i} \phi ) = - \varepsilon (\varepsilon \partial _{y_i} (H_\Gamma - \Delta _\Gamma h)) \overline{{\mathbb {H}}}_\varepsilon ' + {\mathcal {R}}\end{aligned}$$
(128)

where the error term can be estimated (using (68)) by:

$$\begin{aligned}\Vert {\mathcal {R}}\Vert _{C^{0,\alpha }_\varepsilon } \le C \varepsilon ^2 + C (\varepsilon ^2 \Vert \nabla ^2_\Gamma \varepsilon \partial _{y_i} \phi \Vert _{C^{0,\alpha }_\varepsilon } + \varepsilon \Vert \nabla _\Gamma \varepsilon \partial _{y_i} \phi \Vert _{C^{0,\alpha }_\varepsilon } + \Vert \varepsilon \partial _{y_i} \phi \Vert _{C^{0,\alpha }_\varepsilon })^2 \end{aligned}$$

Next, one differentiates (60) in the horizontal directions to show, similarly as in (125) but also estimating the error term \(\langle \phi , \partial _{y_i} {\overline{{\mathbb {H}}}}_\varepsilon ' \rangle _{L^2}\), that

$$\begin{aligned} \left| \int _{-\varepsilon K}^{\varepsilon K} \varepsilon (\partial _{y_i} \phi )(y, z) {\overline{{\mathbb {H}}}}_\varepsilon '(y, z) \, dz \right| \le C e^{-\sqrt{2} K} \Vert \varepsilon (\partial _{y_i} \phi )(y, \cdot ) \Vert _{C^0({\mathbf {I}}_\varepsilon )} + C \varepsilon ^3. \end{aligned}$$
(129)

Lemma 16’s first alternative can only hold for \(\psi = \varepsilon \partial _{y_i} \phi \), then, in case \(\Vert \varepsilon \partial _{y_i} \phi \Vert = O(\varepsilon ^3)\) (which is smaller than the worse upper bound we wish to prove, and thus does not break the applicability of our previous strategy). Arguing as above, using (128) instead of (126) yields (70).

Finally, we establish (78). Recall that, by (69) and (77), \({\hat{\phi }} = \phi - \varepsilon {\mathfrak {h}}{\mathbb {I}}\) satisfies:

$$\begin{aligned} \varepsilon ^2 \Delta {\hat{\phi }} - W''({\overline{{\mathbb {H}}}}_\varepsilon ) {\hat{\phi }} = O_{C^{0,\alpha }_\varepsilon }(\varepsilon ^2), \end{aligned}$$
(130)

The function \({\hat{\phi }}\) satisfies an estimate similar to (129), namely:

$$\begin{aligned} \left| \int _{-\varepsilon K}^{\varepsilon K} {\hat{\phi }}(y, z) {\overline{{\mathbb {H}}}}_\varepsilon '(y, z) \, dz \right| \le C e^{-\sqrt{2} K} \Vert {\hat{\phi }}(y, \cdot ) \Vert _{C^0({\mathbf {I}}_\varepsilon )} + C \varepsilon ^3. \end{aligned}$$
(131)

Thus, as before, Lemma 16’s first alternative can only hold for \(\psi = {\hat{\phi }}\), then, in case \(\Vert {\hat{\phi }} \Vert = O(\varepsilon ^3)\) (which is smaller than the worse upper bound we wish to prove, and thus does not break the applicability of our previous strategy). The rest of the argument goes through as before, applying (130) and (131) instead of (128) and (129).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mantoulidis, C. Variational aspects of phase transitions with prescribed mean curvature. Calc. Var. 61, 43 (2022). https://doi.org/10.1007/s00526-021-02150-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02150-y

Navigation