Skip to main content
Log in

Symmetry and isoperimetry for Riemannian surfaces

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

For a domain \(\Omega \) in a geodesically convex surface, we introduce a scattering energy \(\mathcal {E}(\Omega )\), which measures the asymmetry of \(\Omega \) by quantifying its incompatibility with an isometric circle action. We prove several sharp quantitative isoperimetric inequalities involving \(\mathcal {E}(\Omega )\) and characterize the domains with vanishing scattering energy by their convexity and rotational symmetry. We also give a new of the sharp Sobolev inequality for Riemannian surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arcostanzo, M., Michel, R.: Métriques de révolution d’un disque et invariance par rotation de la longueur des géodésiques. Geom. Dedicata 76(2), 197–209 (1999)

  2. Banchoff, T.F., Pohl, W.F.: A generalization of the isoperimetric inequality. J. Differ. Geometry 6, 175–192 (1971/72)

  3. Beckenbach, E.F., Radó, T.: Subharmonic functions and surfaces of negative curvature. Trans. Am. Math. Soc. 35(3), 662–674 (1933)

    Article  MathSciNet  Google Scholar 

  4. Bögelein, V., Duzaar, F., Fusco, N.: A quantitative isoperimetric inequality on the sphere. Adv. Calc. Var. 10(3), 223–265 (2017)

    Article  MathSciNet  Google Scholar 

  5. Bögelein, V., Duzaar, F., Scheven, C.: A sharp quantitative isoperimetric inequality in hyperbolic \(n\)-space. Calc. Var. Partial Differ. Equ. 54(4), 3967–4017 (2015)

    Article  MathSciNet  Google Scholar 

  6. Bol, G.: Isoperimetrische Ungleichungen für Bereiche auf Flächen. Jber. Deutsch. Math.-Verein. 51, 219–257 (1941)

    MathSciNet  MATH  Google Scholar 

  7. Bonnesen, T.: Über das isoperimetrische Defizit ebener Figuren. Math. Ann. 91(3–4), 252–268 (1924)

    Article  MathSciNet  Google Scholar 

  8. Chodosh, O., Engelstein, M., Spolaor, L.: The riemannian quantitative isoperimetric inequality (2019)

  9. Croke, C.B.: Some isoperimetric inequalities and eigenvalue estimates. Ann. Sci. École Norm. Sup. (4) 13(4), 419–435 (1980)

    Article  MathSciNet  Google Scholar 

  10. Croke, C.B.: A sharp four dimensional isoperimetric inequality. Comment. Math. Helv. 59(1), 187–192 (1984)

    Article  MathSciNet  Google Scholar 

  11. Croke, C.B.: A synthetic characterization of the hemisphere. Proc. Am. Math. Soc. 136(3), 1083–1086 (2008)

    Article  MathSciNet  Google Scholar 

  12. Fusco, N., Maggi, F., Pratelli, A.: The sharp quantitative isoperimetric inequality. Ann. Math. (2) 168(3), 941–980 (2008)

    Article  MathSciNet  Google Scholar 

  13. Gysin, L.M.: The isoperimetric inequality for nonsimple closed curves. Proc. Am. Math. Soc. 118(1), 197–203 (1993)

    Article  MathSciNet  Google Scholar 

  14. Hélein, F.: Inégalité isopérimétrique et calibration. Ann. Inst. Fourier (Grenoble) 44(4), 1211–1218 (1994)

    Article  MathSciNet  Google Scholar 

  15. Howard, R.: The sharp Sobolev inequality and the Banchoff–Pohl inequality on surfaces. Proc. Am. Math. Soc. 126(9), 2779–2787 (1998)

    Article  MathSciNet  Google Scholar 

  16. Kleiner, B.: An isoperimetric comparison theorem. Invent. Math. 108(1), 37–48 (1992)

    Article  MathSciNet  Google Scholar 

  17. Kloeckner, B., Kuperberg, G.: The Cartan-Hadamard conjecture and the little prince (2013)

  18. McGrath, P.: An isoperimetric deficit formula. J. Geom. Anal. 31(4), 3273–3279. https://doi.org/10.1007/s12220-020-00393-3

  19. Muhometov, R.G.: The reconstruction problem of a two-dimensional Riemannian metric, and integral geometry. Dokl. Akad. Nauk SSSR 232(1), 32–35 (1977)

    MathSciNet  Google Scholar 

  20. Pestov, L., Uhlmann, G.: Two dimensional compact simple Riemannian manifolds are boundary distance rigid. Ann. Math. (2) 161(2), 1093–1110 (2005)

    Article  MathSciNet  Google Scholar 

  21. Pleijel, A.: Zwei kurze beweise der isoperimetrischen ungleichung. Arch. Math. 7(4), 317–319 (1956)

    Article  MathSciNet  Google Scholar 

  22. Topping, P.: The optimal constant in Wente’s \(L^\infty \) estimate. Comment. Math. Helv. 72(2), 316–328 (1997)

    Article  MathSciNet  Google Scholar 

  23. Topping, P.: The isoperimetric inequality on a surface. Manuscr. Math. 100(1), 23–33 (1999)

    Article  MathSciNet  Google Scholar 

  24. Weil, A.: Sur les surfaces a courbure negative. C. R. Acad. Sci. Paris 182(4), 1069–1071 (1926)

    MATH  Google Scholar 

  25. Wen, H.: Simple Riemannian surfaces are scattering rigid. Geom. Topol. 19(4), 2329–2357 (2015)

    Article  MathSciNet  Google Scholar 

  26. Willmore, T.J.: An Introduction to Differential Geometry. Clarendon Press, Oxford (1959).. (reprinted from corrected sheets of the first edition, 1959)

    MATH  Google Scholar 

  27. Yau, S.T.: Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold. Ann. Sci. École Norm. Sup. (4) 8(4), 487–507 (1975)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are very happy to thank Christopher Croke, Joseph H.G. Fu and Robert Kusner for their interest in this work and several helpful discussions. We thank Peter Topping for sharing with us a complex analytic proof of the sharp Euclidean Sobolev inequality (see Sect. 3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter McGrath.

Additional information

Communicated by P. Topping.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoisington, J.A., McGrath, P. Symmetry and isoperimetry for Riemannian surfaces. Calc. Var. 61, 6 (2022). https://doi.org/10.1007/s00526-021-02117-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02117-z

Mathematics Subject Classification

Navigation