Skip to main content

Advertisement

Log in

A sharp quantitative isoperimetric inequality in hyperbolic n-space

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we prove a quantitative version of the classical isoperimetric inequality in the hyperbolic space \(\mathbb {H}^n\). The constant only depends on the dimension and an upper bound for the volume of the set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Fusco, N., Morini, M.: Minimality via second variation for a nonlocal isoperimetric problem. Commun. Math. Phys. 322(3), 515–557 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Almgren, F.: Optimal isoperimetric inequalities. Indiana Univ. Math. J. 35(3), 451–547 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barchiesi, M., Cagnetti, F., Fusco, N.: Stability of the Steiner symmetrization of convex sets. J. Eur. Math. Soc. 15, 1245–1278 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bernstein, F.: Über die isoperimetrische Eigenschaft des Kreises auf der Kugeloberfläche und in der Ebene. Math. Ann. 60, 117–136 (1905)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bögelein, V., Duzaar, F., Fusco, N.: A sharp quantitative isoperimetric inequality in higher codimension. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26(3), 309–362 (2012)

    Article  Google Scholar 

  6. Bögelein, V., Duzaar, F., Fusco, N.: A quantitative isoperimetric inequality on the sphere (2013) (preprint)

  7. Bonnesen, T.: Über das isoperimetrische Defizit ebener Figuren. Math. Ann. 91, 252–268 (1924)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cianchi, A., Fusco, N., Maggi, F., Pratelli, A.: On the isoperimetric deficit in Gauss space. Am. J. Math. 133(1), 131–186 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cicalese, M., Leonardi, G.P.: A selection principle for the sharp quantitative isoperimetric inequality. Arch. Ration. Mech. Anal. 206(2), 617–643 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cicalese, M., Leonardi, G.P., Maggi, F.: Sharp stability inequalities for planar double bubbles (preprint). arXiv:1211.3698

  11. David, G., Semmes, S.: Quasiminimal surfaces of codimension 1 and John domains. Pac. J. Math. 183(2), 213–277 (1998)

    Article  MathSciNet  Google Scholar 

  12. Duzaar, F., Steffen, K.: Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals. J. Reine Angew. Math. 546, 73–138 (2002)

    MATH  MathSciNet  Google Scholar 

  13. Figalli, A., Fusco, N., Maggi, F., Millot, V., Morini, M.: Isoperimetry and stability properties of balls with respect to nonlocal energies. Commun. Math. Phys. 336(1), 441–507 (2015)

  14. Figalli, A., Maggi, F., Pratelli, A.: A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182(1), 167–211 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fuglede, B.: Stability in the isoperimetric problem for convex of nearly spherical domains in \(\mathbb{R}^n\). Trans. Am. Math. Soc. 314(2), 619–638 (1989)

    MATH  MathSciNet  Google Scholar 

  16. Fusco, N., Julin, V.: A strong form of the quantitative isoperimetric inequality. Calc. Var. Partial Differ. Equ. 50(3–4), 925–937 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fusco, N., Maggi, F., Pratelli, A.: The sharp quantitative isoperimetric inequality. Ann. Math. (2) 168(3), 941–980 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hall, R.R.: A quantitative isoperimetric inequality in \(n\)-dimensional space. J. Reine Angew. Math. 428, 161–176 (1992)

    MATH  MathSciNet  Google Scholar 

  19. Hall, R.R., Hayman, W.K., Weitsman, A.W.: On asymmetry and capacity. J. d’Analyse Math. 56, 87–123 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kinnunen, J., Korte, R., Lorent, A., Shanmugalingam, N.: Regularity of sets with quasiminimal boundary surfaces in metric spaces. J. Geom. Anal. 23, 1607–1640 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems. An Introduction to Geometric Measure Theory. Cambridge Studies in Advanced Mathematics, vol. 135. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  22. Schmidt, E.: Beweis der isoperimetrischen Eigenschaft der Kugel im hyperbolischen und sphärischen Raum jeder Dimensionszahl. Math. Z. 49, 1–109 (1943/1944)

  23. Tamanini, I.: Regularity results for almost minimal oriented hypersurfaces in \(\mathbb{R}^n\). Quaderni del Dipartimento di Matematica dell Universit‘a di Lecce 1, 1–92 (1984)

    Google Scholar 

  24. White, B.: A strong minimax property of nondegenerate minimal submanifolds. J. Reine Angew. Math. 457, 203–218 (1994)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We acknowledge the warm hospitality of the Institut Mittag-Leffler in the Fall 2013 during the program “Evolutionary problems”, where parts of this paper were written.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Duzaar.

Additional information

Communicated by L. Simon.

Appendix: Elementary facts in hyperbolic space

Appendix: Elementary facts in hyperbolic space

Here we give the proofs of certain facts we used in the course of the slicing lemma. We use the notation from the proof of Lemma 3.3 without any further explanation.

Lemma 7.1

The function

$$\begin{aligned} (0,\infty )\ni y \mapsto \frac{y\varphi '(y)}{\varphi (y)} \end{aligned}$$

is strictly increasing.

Proof

Because of the strict monotonicity of \(\mathbf {v}(r)\) it is equivalent to show that

$$\begin{aligned} h(r):= \frac{\mathbf {v}(r)\varphi '(\mathbf {v}(r))}{\varphi (\mathbf {v}(r))} \end{aligned}$$

is increasing in \(r>0\). Using the identities

$$\begin{aligned} \varphi (\mathbf {v}(r))=\mathbf {p}(r)=n\omega _n\sinh ^{n-1}r \quad \text{ and }\quad \varphi '(\mathbf {v}(r))=(n-1)\coth r \end{aligned}$$

(cf. (3.17)), we compute that \(h'(r)>0\) is equivalent to

$$\begin{aligned} \mathbf {v}(r)\sinh ^{n-1}r(n\cosh ^2r-\sinh ^2r) < \mathbf {v}'(r)\cosh r\sinh ^nr, \end{aligned}$$

which, taking into account that \(\mathbf {v}'(r)=\mathbf {p}(r)\), is equivalent to (2.10). \(\square \)

Lemma 7.2

The expression

$$\begin{aligned} \frac{\mathbf {p}(r)}{\psi _r(s)} \end{aligned}$$

is increasing in \(r>0\) for every \(s\in (0,1)\).

Proof

We begin by calculating

$$\begin{aligned} \frac{\psi _r(s)}{\mathbf {p}(r)} = \frac{\varphi (s\mathbf {v}(r))}{\varphi (\mathbf {v}(r))} + \frac{\varphi ((1-s)\mathbf {v}(r))}{\varphi (\mathbf {v}(r))} -1. \end{aligned}$$

It therefore suffices to prove that the function

$$\begin{aligned} f(y):=\frac{\varphi (sy)}{\varphi (y)},\quad y>0, \end{aligned}$$

is decreasing for every \(s\in [0,1]\). A straightforward calculation yields that \(f'(y)<0\) is equivalent to

$$\begin{aligned} \frac{sy\varphi '(sy)}{\varphi (sy)} < \frac{y\varphi '(y)}{\varphi (y)}. \end{aligned}$$
(6.25)

But Lemma 7.1 implies that the right-hand side is increasing in y. Since \(s\in (0,1)\) and \(y>0\), we infer the asserted estimate (6.25) and thereby complete the proof of the lemma. \(\square \)

Lemma 7.3

For any \(r>0\) we have

$$\begin{aligned} \int _0^1\frac{1}{\psi _r(s)}\,ds <\infty . \end{aligned}$$

Proof

We first note that it is enough to prove the integrability of \(1/\psi _r\) in a neighborhood of the singular points 0 and 1. Therefore, we consider \(s\in [0,\frac{1}{2}]\). By the mean value theorem there exist \(\xi _1\in [0,s]\) and \(\xi _2\in [1-s,1]\) such that there holds:

$$\begin{aligned} \psi _r(s)&= \varphi (s\mathbf {v}(r)) + \varphi ((1-s)\mathbf {v}(r)) - \varphi (\mathbf {v}(r)) \\&= s\bigg [\frac{d}{ds}\Big |_{s=\xi _1}\varphi (s\mathbf {v}(r)) - \frac{d}{ds}\Big |_{s=\xi _2}\varphi (s\mathbf {v}(r))\bigg ] \\&= s\mathbf {v}(r)\bigg [\frac{n-1}{\tanh (\mathbf v^{-1}(\xi _1\mathbf {v}(r)))} - \frac{n-1}{\tanh (\mathbf v^{-1}(\xi _2\mathbf {v}(r)))}\bigg ] \\&\ge s\mathbf {v}(r)\bigg [\frac{n-1}{\tanh (\mathbf v^{-1}(s\mathbf {v}(r)))} - \frac{n-1}{\tanh (\mathbf v^{-1}((1-s)\mathbf {v}(r)))}\bigg ] \\&= \frac{(n-1)s\mathbf {v}(r)}{\tanh (\mathbf v^{-1}(s\mathbf {v}(r)))} \bigg [1-\frac{\tanh (\mathbf v^{-1}(s\mathbf {v}(r)))}{\tanh (\mathbf v^{-1}((1-s)\mathbf {v}(r)))}\bigg ]. \end{aligned}$$

We now choose \(s_o\in [0,\frac{1}{2}]\) in dependence of r small enough to have

$$\begin{aligned} \tanh (\mathbf v^{-1}(s_o\mathbf {v}(r))) \le \tfrac{1}{2}\tanh (\mathbf v^{-1}((1-s_o)\mathbf {v}(r))). \end{aligned}$$

Then, for \(s\in (0,s_o]\) we find that

$$\begin{aligned} \psi _r(s)&\ge \frac{(n-1)s\mathbf {v}(r)}{\tanh (\mathbf v^{-1}(s\mathbf {v}(r)))} \bigg [1-\frac{\tanh (\mathbf v^{-1}(s_o\mathbf {v}(r)))}{\tanh (\mathbf v^{-1}((1-s_o)\mathbf {v}(r)))}\bigg ] \nonumber \\&\ge \frac{(n-1)s\mathbf {v}(r)}{2\tanh (\mathbf v^{-1}(s\mathbf {v}(r)))} \ge \frac{(n-1)s\mathbf {v}(r)}{2\sinh (\mathbf v^{-1}(s\mathbf {v}(r)))}. \end{aligned}$$
(6.26)

Next, we note that for \(0\le \sigma \le 1\) we have \(\cosh \sigma \le 2\) and therefore we have

$$\begin{aligned} \sinh ^{n-1}\sigma \cosh \sigma \le 2\sinh ^{n-1}\sigma . \end{aligned}$$

Integrating both sides with respect to \(\sigma \) over (0, t), we obtain for \(0\le t\le 1\) that

$$\begin{aligned} \sinh ^{n}t \le 2n\int _0^t\sinh ^{n-1}\sigma \,d\sigma = \tfrac{2}{\omega _n}\mathbf {v}(t). \end{aligned}$$

Assuming that \(\mathbf v^{-1}(s\mathbf {v}(r))\le 1\), an assumption which can be imposed after possibly reducing the value of \(s_o\), we can use the preceding estimate in (6.26) to infer that for all \(s\in (0,s_o]\)

$$\begin{aligned} \frac{1}{\psi _r(s)} \le \frac{2^{\frac{n+1}{n}} \mathbf v(\mathbf v^{-1}(s\mathbf {v}(r)))^{\frac{1}{n}}}{(n-1)\omega _n^{\frac{1}{n}}s\mathbf {v}(r)} = \frac{2^{\frac{n+1}{n}}}{(n-1)\omega _n^{\frac{1}{n}}(s\mathbf {v}(r))^{\frac{n-1}{n}}} = c(n,r)\, s^{-\frac{n-1}{n}}. \end{aligned}$$

But this ensures that the integral \(\int _0^{s_o} 1/\psi _r \,ds\) is finite and by symmetry we also have that \(\int _{1-s_o}^1 1/\psi _r \,ds = \int _0^{s_o} 1/\psi _r \,ds<\infty \). This finishes the proof of the lemma. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bögelein, V., Duzaar, F. & Scheven, C. A sharp quantitative isoperimetric inequality in hyperbolic n-space. Calc. Var. 54, 3967–4017 (2015). https://doi.org/10.1007/s00526-015-0928-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0928-9

Mathematics Subject Classification

Navigation