Skip to main content
Log in

Uniqueness of positive bound states with multiple bumps for Schrödinger–Poisson system

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the uniqueness of multi-bump solutions for the following Schrödinger–Poisson system

$$\begin{aligned}\left\{ \begin{array}{lll} -\varepsilon ^{2} \Delta u + Q(x) u + \Psi (x) u = |u|^{p-1} u, &{}&{} \text { in } {\mathbb {R}}^{N},\\ - \Delta \Psi = (N-2)\omega _{N-1} u^{2}, &{}&{} \text { in } {\mathbb {R}}^{N}, \end{array} \right. \end{aligned}$$
(0.1)

where \(\varepsilon \) is a parameter, Q(x) is a potential function in \({\mathbb {R}}^{N},N\in [3, 6]\), \(p \in (1, \frac{N+2}{N-2})\) and \(\omega _{N-1}\) is the surface area of a unit ball in \({\mathbb {R}}^{N}\). We prove the uniqueness of positive multi-bump solutions for Schrödinger–Poisson system concentrating at the critical points of Q(x), whenever Q(x) is degenerate or non-degenerate, or even not \(C^{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A.: On Schrödinger-Poisson systems. Milan J. Math. 76, 257–274 (2008)

    Article  MathSciNet  Google Scholar 

  2. Ambrosetti, A.: Badiale, M., Cingolani, S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 140, 285–300 (1997)

  3. Ambrosetti, A.: Malchiodi, A.: Perturbation Methods and Semilinear Elliptic Problems on \(R^N\). Verlag, Birkhäuser (2006)

  4. Aprile, D’., Mugnai, D.: Solitary waves for nonlinear Klein-Gordon-Maxwell equations. Proc. Royal Soc. Edinburgh Sect. A 134, 1–14 (2004)

  5. Aprile, D’., Wei, J.: Boundary concentration in radial solutions to a system of semilinear elliptic equations. J. Lond. Math. Soc. 74, 415–440 (2006)

  6. Azzollini, A., Pomponio, A.: Ground state solution for the nonlinear Schrödinger-Maxwell equations. J. Math. Anal. Appl. 346, 90–108 (2008)

    Article  Google Scholar 

  7. Benci, V., Fortunato, D.: An eigenvalue problem for the Schröodinger-Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)

    Article  MathSciNet  Google Scholar 

  8. Benci, V., Fortunato, D.: Solitary waves of the nonlinear Klein-Gordon equation coupled with Maxwell equations. Rev. Math. Phys. 14, 409–420 (2002)

    Article  MathSciNet  Google Scholar 

  9. Benguria, R., Brezis, H., Lieb, E.H.: The Thomas-Fermi-von Weizsäker theory of atoms and molecules. Commun. Math. Phys. 79, 167–180 (1981)

    Article  Google Scholar 

  10. Cao, D., Heinz, H.P.: Uniqueness of positive multi-lump bound states of nonlinear Schrödinger equations. Math. Z. 243, 599–642 (2003)

    Article  MathSciNet  Google Scholar 

  11. Cao, D., Li, S., Luo, P.: Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 54, 4037–4063 (2015)

    Article  Google Scholar 

  12. Cao, D., Noussair, E.S., Yan, S.: Solutions with multiple “peaks” for nonlinear elliptic equations. Proc. Royal Soc. Edinburgh Sect. A 129, 235–264 (1999)

  13. Cao, D., Peng, S.: Semi-classical bound states for Schrödinger equations with potentials vanishing or unbounded at infinity. Commun. Part. Differ. Equ. 34, 1566–1591 (2009)

    Article  Google Scholar 

  14. Cao, D., Peng, S., Yan, S.: Singularly Perturbed Methods for Nonlinear Elliptic Problems, Cambridge Studies in Advanced Mathematics, 191. Cambridge University Press, Cambridge (2021)

    Book  Google Scholar 

  15. Del Pino, M., Felmer, P.L.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4, 121–137 (1996)

    Article  MathSciNet  Google Scholar 

  16. Del Pino, M., Felmer, P.L.: Multi-peak bound states of nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Lineaire 15, 127–149 (1998)

    Article  MathSciNet  Google Scholar 

  17. Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)

    Article  MathSciNet  Google Scholar 

  18. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (1998)

    MATH  Google Scholar 

  19. Glangetas, L.: Uniqueness of positive solutions of a nonlinear elliptic equation involving the critical exponent. Nonlinear Anal. TMA 20, 571–603 (1993)

    Article  MathSciNet  Google Scholar 

  20. Grossi, M.: On the number of single-peak solutions of the nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Lineaire 19, 261–280 (2002)

    Article  MathSciNet  Google Scholar 

  21. Gui, C.: Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method. Commun. Part. Differ. Equ. 21, 787–820 (1996)

    Article  Google Scholar 

  22. Hardy, G.H., Littlewood, J.E.: Some properties of fractional integrals (1). Math. Z. 27, 565–606 (1928)

    Article  MathSciNet  Google Scholar 

  23. Ianni, I., Vaira, G.: On concentration of positive bound states for the Schrödinger-Poisson problem with potentials. Adv. Nonlinear Stud 8, 573–595 (2008)

    Article  MathSciNet  Google Scholar 

  24. Kim, S., Seok, J.: On nodal solutions of the nonlinear Schrödinger-Poisson equations. Commun. Contemp. Math. 14, 12450041–12450057 (2012)

    Article  Google Scholar 

  25. Kwong, M.K.: Uniqueness of positive solutions of \(-\Delta u - u + u^{p} = 0\). Arch. Ration. Mech. Anal. 105, 243–266 (1989)

    Article  Google Scholar 

  26. Li, Y.Y., Nirenberg, L.: The Dirichlet problem for singularly perturbed elliptic equations. Commun. Pure Appl. Math. 51, 1445–1490 (1998)

    Article  MathSciNet  Google Scholar 

  27. Lieb, E.H.: Thomas-Fermi and related theories and molecules. Rev. Modern Phys. 53, 603–641 (1981)

    Article  MathSciNet  Google Scholar 

  28. Lions, P.L.: Solutions of Hartree-Fock equations for Coulomb systems. Commun. Math. Phys. 109, 33–97 (1984)

    Article  MathSciNet  Google Scholar 

  29. Long, W., Xiong, Z.: Non-radial multipeak positive solutions for the Schrödinger-Poisson problem. J. Math. Anal. Appl. 455, 680–697 (2017)

    Article  MathSciNet  Google Scholar 

  30. Markowich, P., Ringhofer, C., Schmeiser, C.: Semiconductor Equations. Springer-Verlag, New York (1990)

    Book  Google Scholar 

  31. Moser, J.: A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13, 457–468 (1960)

  32. Noussair, E.S., Yan, S.: On positive multipeak solutions of a nonlinear elliptic problem. J. Lond. Math. Soc. 62, 213–227 (2000)

    Article  MathSciNet  Google Scholar 

  33. Oh, Y.G.: Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of class \((V)_{a}\). Commun. Part. Differ. Equ. 13, 1499–1519 (1988)

    Article  Google Scholar 

  34. Oh, Y.G.: On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Commun. Math. Phys. 131, 223–253 (1990)

    Article  Google Scholar 

  35. Rey, O.: The role of the Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent. J. Funct. Anal. 89, 1–52 (1990)

  36. Ruiz, D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    Article  MathSciNet  Google Scholar 

  37. Ruiz, D.: Semiclassical states for coupled Schrdinger-Maxell equations concentration around a sphere. Math. Models Methods Appl. Sci. 15, 141–164 (2005)

    Article  MathSciNet  Google Scholar 

  38. Ruiz, D., Vaira, G.: Cluster solutions for the Schrödinger-Poinsson-Slater problem around a local minimum of potential. Rev. Mat. Iberoamericana 27, 253–271 (2011)

    Article  MathSciNet  Google Scholar 

  39. Wang, X.: On the concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153, 229–244 (1993)

    Article  Google Scholar 

  40. Yu, M., Chen, H.: Existence and uniqueness of multi-bump solutions for nonlinear Schrödinger-Poisson systems. Adv. Nonlinear Stud. 21, 661–681 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for the helpful comments and pointing out the paper [40] to us.

Funding

Benniao Li is supported by National Science Foundation of China(12101274). Wei Long is supported by National Science Foundation of China(11871253), NSF of Jiangxi Province(20192ACB20012), Jiangxi Two Thousand Talents Program(jxsq2019202001). Jiangxi Provincial Department of Education Fund(GJJ191687). Zhongwei Tang is supported by National Science Foundation of China(12071036). Jinge Yang is supported by National Science Foundation of China(11701260).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongwei Tang.

Additional information

Communicated by N. S. Trudinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Some estimates for the nonlocal term

Appendix A. Some estimates for the nonlocal term

In this part, we will give the estimates of the nonlocal terms.

Lemma A.1

It holds,

$$\begin{aligned} \int _{B_{d}(\xi _{i, \varepsilon })} \int _{{\mathbb {R}}^{N}} u_{\varepsilon }^{2}(x) u_{\varepsilon }^{2}(y) \frac{ x_{j} - y_{j}}{|x - y|^{N}} dy dx = O\Bigl ( \varepsilon ^{\min \{N+3, N+1+m\}} +\varepsilon ^{N+1} \sum _{i=1}^{l} |\xi _{i, \varepsilon } - \xi _{i}|^{m} \Bigr ).\nonumber \\ \end{aligned}$$
(A.1)

Proof

Firstly, we split the nonlocal term into four parts and denote

$$\begin{aligned} \int _{B_{d}(\xi _{i, \varepsilon })} \int _{{\mathbb {R}}^{N}} u_{\varepsilon }^{2}(x) u_{\varepsilon }^{2}(y) \frac{x_{j} - y_{j}}{|x - y|^{N}} dy dx := F_{1} + F_{2} + F_{3} + F_{4}, \end{aligned}$$

where

$$\begin{aligned} F_{1}= & {} \int _{B_{d}(\xi _{i, \varepsilon })} \int _{{\mathbb {R}}^{N}} W^{2}_{\xi _{i}}\Bigl (\frac{x- \xi _{i, \varepsilon }}{\varepsilon }\Bigr ) u_{\varepsilon }^{2}(y) \frac{x_{j} - y_{j}}{|x - y|^{N}} dy dx; \\ F_{2}= & {} 2 \int _{B_{d}(\xi _{i, \varepsilon })} \int _{{\mathbb {R}}^{N}} W_{\xi _{i}}\Bigl (\frac{x- \xi _{i, \varepsilon }}{\varepsilon }\Bigr ) \phi _{\varepsilon }(x) u_{\varepsilon }^{2}(y) \frac{x_{j} - y_{j}}{|x - y|^{N}} dy dx; \\ F_{3}= & {} \int _{B_{d}(\xi _{i, \varepsilon })} \int _{{\mathbb {R}}^{N}} \phi ^{2}_{\varepsilon }(x) u_{\varepsilon }^{2}(y) \frac{x_{j} - y_{j}}{|x - y|^{N}} dy dx ;\\ F_{4}= & {} \int _{B_{d}(\xi _{i, \varepsilon })} \int _{{\mathbb {R}}^{N}} \Bigl ( \bigl ( \sum _{h \ne i} W_{\xi _{h }} \bigl (\frac{x- \xi _{h, \varepsilon }}{\varepsilon }\bigl )\bigr )^{2} + 2 \sum _{h \ne i} W_{\xi _{h }} \Bigl (\frac{x- \xi _{h, \varepsilon }}{\varepsilon }\Bigr ) W_{\xi _{i }} \Bigl (\frac{x- \xi _{i, \varepsilon }}{\varepsilon }\Bigr ) \\&+ 2\sum _{h \ne i} W_{\xi _{h }} \Bigl (\frac{x- \xi _{h, \varepsilon }}{\varepsilon }\Bigr ) \phi _{\varepsilon } \Bigr ) \times u_{\varepsilon }^{2}(y) \frac{x_{j} - y_{j}}{|x - y|^{N}} dy dx. \end{aligned}$$

Next, we will deal with each term. Indeed, the term \(F_{1}\) is more complicated than others. Expand \(F_{1}\) as follows:

$$\begin{aligned} F_{1} : = F_{11}+ F_{12}+ F_{13}+ F_{14} +F_{15}, \end{aligned}$$
(A.2)

where

$$\begin{aligned} F_{11}= & {} \int _{B_{d}(\xi _{i, \varepsilon })} \int _{{\mathbb {R}}^{N}} W^{2}_{\xi _{i}}\Bigl (\frac{x -\xi _{i, \varepsilon }}{\varepsilon }\Bigr ) W^{2}_{\xi _{i}}\Bigl (\frac{y -\xi _{i, \varepsilon }}{\varepsilon }\Bigr ) \frac{x_{j} - y_{j}}{|x - y|^{N}} dy dx; \\ F_{12}= & {} 2\int _{B_{d}(\xi _{i, \varepsilon })} \int _{{\mathbb {R}}^{N}} W^{2}_{\xi _{i}}\Bigl (\frac{x -\xi _{i, \varepsilon }}{\varepsilon }\Bigr ) W_{\xi _{i}}\Bigl (\frac{y -\xi _{i, \varepsilon }}{\varepsilon }\Bigr ) \bigl (\sum _{ h \ne i} W_{\xi _{h}}\bigl (\frac{y -\xi _{h, \varepsilon }}{\varepsilon }\bigl ) \bigr ) \frac{x_{j} - y_{j}}{|x - y|^{N}} dy dx;\\ F_{13}= & {} \int _{B_{d}(\xi _{i, \varepsilon })} \int _{{\mathbb {R}}^{N}} W^{2}_{\xi _{i}}\Bigl (\frac{x -\xi _{i, \varepsilon }}{\varepsilon }\Bigr ) \bigl (\sum _{ h \ne i} W_{\xi _{h}}\bigl (\frac{y -\xi _{h, \varepsilon }}{\varepsilon }\bigl ) \bigr )^{2} \frac{x_{j} - y_{j}}{|x - y|^{N}} dy dx;\\ F_{14}= & {} 2 \int _{B_{d}(\xi _{i, \varepsilon })} \int _{{\mathbb {R}}^{N}} W^{2}_{\xi _{i}}\Bigl (\frac{x -\xi _{i, \varepsilon }}{\varepsilon }\Bigr ) \bigl (\sum _{h=1}^{l} W_{\xi _{h}}\bigl (\frac{y -\xi _{h, \varepsilon }}{\varepsilon }\bigl ) \bigr ) \phi _{\varepsilon }(y) \frac{x_{j} - y_{j}}{|x - y|^{N}} dy dx;\\ F_{15}= & {} \int _{B_{d}(\xi _{i, \varepsilon })} \int _{{\mathbb {R}}^{N}} W^{2}_{\xi _{i}}\Bigl (\frac{x -\xi _{i, \varepsilon }}{\varepsilon }\Bigr ) \phi ^{2}_{\varepsilon }(y) \frac{x_{j} - y_{j}}{|x - y|^{N}} dy dx. \end{aligned}$$

It follows from symmetry that

$$\begin{aligned} F_{11} = 0. \end{aligned}$$
(A.3)

From Lemma 2.2, we obtain

$$\begin{aligned} \begin{aligned} |F_{12}|&\le C \Vert W_{\xi _{i}}\Bigl (\frac{x - \xi _{i ,\varepsilon }}{\varepsilon }\Bigr ) \Vert _{L^{\frac{4N}{N+1}}({\mathbb {R}}^{N})}^{2} \Bigl ( \sum _{h \ne i }\int _{{\mathbb {R}}^{N}} W^{\frac{2N}{N+1}}_{\xi _{h}}\Bigl (\frac{x - \xi _{h ,\varepsilon }}{\varepsilon }\Bigr ) W^{\frac{2N}{N+1}}_{\xi _{i}}\Bigl (\frac{x - \xi _{i ,\varepsilon }}{\varepsilon }\Bigr ) dx \Bigr )^{\frac{N+1}{2N}} \\&= O\Bigl ( e^{-\frac{\tau }{\varepsilon }} \Bigr ). \end{aligned} \end{aligned}$$
(A.4)

Thus, we have, for \(0< d < \min _{i \ne h, i, h =1, 2, \cdots , l}\{ \frac{|\xi _{i} - \xi _{h}|}{3}, \frac{\tau }{2}\} \)

$$\begin{aligned} |F_{13}|\le & {} C \sum _{ h \ne i} \int _{B_{d}(\xi _{i, \varepsilon })} \int _{{\mathbb {R}}^{N}} W^{2}_{\xi _{i}}\left( \frac{x -\xi _{i, \varepsilon }}{\varepsilon }\right) W^{2}_{\xi _{h}}\left( \frac{y -\xi _{h, \varepsilon }}{\varepsilon }\right) \frac{1}{|x - y|^{N-1}} dy dx \nonumber \\= & {} C \sum _{ h \ne i} \int _{B_{d}(\xi _{i, \varepsilon })} \int _{B_{2d}(\xi _{i, \varepsilon })} W^{2}_{\xi _{i}}(\frac{x -\xi _{i, \varepsilon }}{\varepsilon }) W^{2}_{\xi _{h}}\left( \frac{y -\xi _{h, \varepsilon }}{\varepsilon }\right) \frac{1}{|x - y|^{N-1}} dy dx \nonumber \\&+ C \sum _{ h \ne i} \int _{B_{d}(\xi _{i, \varepsilon })} \int _{{\mathbb {R}}^{N} \setminus B_{2d}(\xi _{i, \varepsilon })} W^{2}_{\xi _{i}}\left( \frac{x -\xi _{i, \varepsilon }}{\varepsilon }\right) W^{2}_{\xi _{h}}\left( \frac{y -\xi _{h, \varepsilon }}{\varepsilon }\right) \frac{1}{|x - y|^{N-1}} dy dx \nonumber \\= & {} C \varepsilon ^{N+1} \sum _{ h \ne i} \int _{B_{d/\varepsilon }(0)} \int _{B_{2d/ \varepsilon }(0)} W^{2}_{\xi _{i}}(x) W^{2}_{\xi _{h}}\left( y + \frac{\xi _{i, \varepsilon } -\xi _{h, \varepsilon }}{\varepsilon }\right) |x - y|^{1-N}dy dx \nonumber \\&+ C \varepsilon ^{N+1} \sum _{ h \ne i} \int _{B_{d/\varepsilon }(0)} \int _{{\mathbb {R}}^{N} \setminus B_{2d/ \varepsilon }(0)} W^{2}_{\xi _{i}}(x) W^{2}_{\xi _{h}}\left( y + \frac{\xi _{i, \varepsilon } -\xi _{h, \varepsilon }}{\varepsilon }\right) |x - y|^{1-N} dy dx.\nonumber \\ \end{aligned}$$
(A.5)

Since \(|\xi _{i} - \xi _{h}| > 3d,\) then

$$\begin{aligned} |y + \frac{\xi _{i, \varepsilon } - \xi _{h, \varepsilon }}{\varepsilon }| \ge |\frac{\xi _{i, \varepsilon } - \xi _{h, \varepsilon }}{\varepsilon } | - |y| \ge \frac{d}{2\varepsilon }, \end{aligned}$$

if \(y \in B_{2d/ \varepsilon }(0)\). Thus, it follows from the exponential decay of \(W_{\xi _{h}}\) at infinity that

$$\begin{aligned} \sum _{ h \ne i} \int _{B_{d/\varepsilon }(0)} \int _{B_{2d/ \varepsilon }(0)} W^{2}_{\xi _{i}}(x) W^{2}_{\xi _{h}}( y + \frac{\xi _{i, \varepsilon } -\xi _{h, \varepsilon }}{\varepsilon }) |x - y|^{1-N}dy dx = O\Bigl (e^{-\frac{\sigma }{\varepsilon }}\Bigr ). \end{aligned}$$

Therefore,

$$\begin{aligned}&|F_{13}| \nonumber \\&\quad \le C \varepsilon ^{N+1} \sum _{ h \ne i} \int _{B_{d/\varepsilon }(0)} \int _{{\mathbb {R}}^{N} \setminus B_{2d/ \varepsilon }(0)} W^{2}_{\xi _{i}}(x) W^{2}_{\xi _{h}}\Bigl ( y + \frac{\xi _{i, \varepsilon } -\xi _{h, \varepsilon }}{\varepsilon }\Bigr ) |x - y|^{1-N} dy dx + O\Bigl (e^{-\frac{\sigma }{\varepsilon }}\Bigr ) \nonumber \\&\quad = C \varepsilon ^{2N} \sum _{ h \ne i} \int _{B_{d/\varepsilon }(0)} \int _{{\mathbb {R}}^{N} \setminus B_{2d/ \varepsilon }(0)} W^{2}_{\xi _{i}}(x) W^{2}_{\xi _{h}}\Bigl ( y + \frac{\xi _{i, \varepsilon } -\xi _{h, \varepsilon }}{\varepsilon }\Bigr ) dy dx + O\Bigl (e^{-\frac{\sigma }{\varepsilon }} \Bigr ) \nonumber \\&\quad = O\Bigl ( \varepsilon ^{2N} \sum _{h \ne i} \int _{{\mathbb {R}}^{N}} W^{2}_{\xi _{i}}(x) dx \cdot \int _{{\mathbb {R}}^{N}} W^{2}_{\xi _{h}}\Bigl ( y + \frac{\xi _{i, \varepsilon } -\xi _{h, \varepsilon }}{\varepsilon }\Bigr ) dy \Bigr ) dy dx + O\Bigl (e^{-\frac{\sigma }{\varepsilon }} \Bigr ) \nonumber \\&\quad = O\bigl (\varepsilon ^{2N}\bigr ). \end{aligned}$$
(A.6)

It is similar with (A.4) to compute that, by Lemmas 2.1 and 2.6,

$$\begin{aligned} \begin{aligned} |F_{14}| \le&C \Vert W_{\xi _{i}}\Bigl (\frac{x - \xi _{i ,\varepsilon }}{\varepsilon }\Bigr ) \Vert _{L^{\frac{4N}{N+1}}({\mathbb {R}}^{N})}^{2} \Bigl (\sum _{h=1}^{l} \int _{{\mathbb {R}}^{N}} W^{\frac{2N}{N+1}}_{\xi _{h}}\Bigl (\frac{x - \xi _{h ,\varepsilon }}{\varepsilon }\Bigr ) \phi _{\varepsilon }^{\frac{2N}{N+1}}(x) dx \Bigr )^{\frac{N+1}{2N}} \\ \le&C \varepsilon ^{\frac{3(N+1)}{4}} \Vert \phi _{\varepsilon }\Vert _{L^{\frac{4N}{N+1}}({\mathbb {R}}^{N})} = O\Bigl ( \varepsilon ^{\min \{N+3, N+1 + m\}} +\varepsilon ^{N+1} \sum _{i=1}^{l} |\xi _{i, \varepsilon } - \xi _{i}|^{m} \Bigr ). \end{aligned} \end{aligned}$$
(A.7)

and

$$\begin{aligned} \begin{aligned} |F_{15}| \le&C \Vert W_{\xi _{i}}\Bigl (\frac{x - \xi _{i ,\varepsilon }}{\varepsilon }\Bigr ) \Vert _{L^{\frac{4N}{N+1}}({\mathbb {R}}^{N})}^{2} \Vert \phi _{\varepsilon } \Vert _{L^{\frac{4N}{N+1}}({\mathbb {R}}^{N})}^{2} \\ \le&C \varepsilon \Vert \phi _{\varepsilon }\Vert _{\varepsilon }^{2} = O\Bigl ( \varepsilon ^{\min \{N+5, N+1+ 2m\}} + \varepsilon ^{N+1} \sum _{i=1}^{l} |\xi _{i, \varepsilon } - \xi _{i}|^{2m} \Bigr ). \end{aligned} \end{aligned}$$
(A.8)

Thus, from (A.2) - (A.6),

$$\begin{aligned} F_{1} = O\Bigl ( \varepsilon ^{\min \{N+3, N+1+m\}} +\varepsilon ^{N+1} \sum _{i=1}^{l} |\xi _{i, \varepsilon } - \xi _{i}|^{m} \Bigr ). \end{aligned}$$
(A.9)

By Hölder inequality, Lemmas 2.12.6 and 2.2, we obtain that

$$\begin{aligned} \begin{aligned} |F_{2}| \le&C \int _{B_{d}(\xi _{i, \varepsilon })} \int _{{\mathbb {R}}^{N}} | W_{\xi _{i}}\Bigl (\frac{x- \xi _{i, \varepsilon }}{\varepsilon }\Bigr ) \phi _{\varepsilon }(x) | u_{\varepsilon }^{2}(y) \frac{1}{|x - y|^{N-1 }} dy dx \\ \le&C \Bigl ( \int _{{\mathbb {R}}^{N}} W^{\frac{2N}{N+1}}_{\xi _{i}}\Bigl (\frac{x- \varepsilon _{i, \varepsilon }}{\varepsilon }\Bigr ) |\phi _{\varepsilon }(x)|^{\frac{2N}{N+1}} dx \Bigr )^{\frac{N+1}{2N}} \Vert u_{\varepsilon }\Vert ^{2}_{L^{\frac{4N}{N+1}}({\mathbb {R}}^{N})} \\ \le&C \varepsilon ^{\frac{3(N+1)}{4}} \Vert \phi _{\varepsilon }\Vert _{L^{\frac{4N}{N+1}}({\mathbb {R}}^{N})} = O\Bigl ( \varepsilon ^{\min \{N+3, N+1+ m\}} + \varepsilon ^{N+1} \sum _{i =1 }^{l} |\xi _{i, \varepsilon } - \xi _{i}|^{m} \Bigr ). \end{aligned} \end{aligned}$$
(A.10)

and

$$\begin{aligned} \begin{aligned} |F_{3}| =&O\Bigl (\Vert \phi _{\varepsilon }\Vert ^{2}_{L^{\frac{4N}{N+1}}({\mathbb {R}}^{N})} \Vert u_{\varepsilon }\Vert _{L^{\frac{4N}{N+1}}({\mathbb {R}}^{N})}^{2}\Bigr ) = O\Bigl ( \varepsilon \Vert \phi _{\varepsilon }\Vert _{\varepsilon }^{2}\Bigr )\\ =&O\Bigl ( \varepsilon ^{\min \{N+5, N+1 + 2m\}} + \varepsilon ^{N+1} \sum _{i=1}^{l} |\xi _{i, \varepsilon } - \xi _{i}|^{2m} \Bigr ). \end{aligned} \end{aligned}$$
(A.11)

By the exponential decay of \(W_{\xi }(x)\) away from the concentrating points, we can get

$$\begin{aligned} |F_{4}| = O\Bigl (e^{-\frac{\sigma }{\varepsilon }}\Bigr ). \end{aligned}$$
(A.12)

The result follows from (A.9) - (A.12). \(\square \)

Furthermore, we discuss with the nonlocal terms in (3.10).

Lemma A.2

We have

$$\begin{aligned} \begin{aligned}&\int _{B_{d}(\xi ^{(1)}_{i, \varepsilon })} \int _{{\mathbb {R}}^{N}} [u_{\varepsilon }^{(1)}(y)]^{2} \bigl ( u_{\varepsilon }^{(1)}(x) + u_{\varepsilon }^{(2)}(x) \bigr ) \eta _{\varepsilon }(x) \frac{(x_{j} - y_{j})}{|x - y|^{N}} dy dx\\&\qquad + \int _{B_{d}(\xi ^{(1)}_{i, \varepsilon })} \int _{{\mathbb {R}}^{N}} \bigl ( u_{\varepsilon }^{(1)}(y) + u_{\varepsilon }^{(2)}(y) \bigr ) \eta _{\varepsilon }(y) [u_{\varepsilon }^{(2)}(x)]^{2} \frac{(x_{j} - y_{j})}{|x - y|^{N}} dy dx \\&\quad = O\bigl (\varepsilon ^{\min \{N+1+ m, N+3\}}\bigr ). \end{aligned} \end{aligned}$$
(3.13)

Proof

Denote

$$\begin{aligned}&\int _{B_{d}(\xi ^{(1)}_{i, \varepsilon })} \int _{{\mathbb {R}}^{N}} [u_{\varepsilon }^{(1)}(y)]^{2} \bigl ( u_{\varepsilon }^{(1)}(x) + u_{\varepsilon }^{(2)}(x) \bigr ) \eta _{\varepsilon }(x) \frac{(x_{j} - y_{j})}{|x - y|^{N}} dy dx \\&\quad = H_{1} + H_{2} + H_{3} + H_{4} + H_{5}, \end{aligned}$$

where

$$\begin{aligned} H_{1}= & {} \int _{B_{d}(\xi ^{(1)}_{i, \varepsilon })} \int _{{\mathbb {R}}^{N}}W^{2}_{\xi _{i}}(\frac{y - \xi ^{(1)}_{i, \varepsilon }}{\varepsilon }) \bigl ( W_{\xi _{i} }\bigl (\frac{x - \xi ^{(1)}_{i, \varepsilon }}{\varepsilon }\bigr ) + W_{\xi _{i } } \bigl (\frac{x - \xi _{i, \varepsilon }^{(2)}}{\varepsilon } \bigr )\bigr ) \eta _{\varepsilon }(x) \frac{(x_{j} - y_{j})}{|x - y|^{N}} dy dx;\\ H_{2}= & {} \int _{B_{d}(\xi ^{(1)}_{i, \varepsilon })} \int _{{\mathbb {R}}^{N}} [u_{\varepsilon }^{(1)}(y)]^{2}\bigl ( \sum _{h \ne i } W_{\xi _{h} }\bigl (\frac{x - \xi ^{(1)}_{h, \varepsilon }}{\varepsilon }\bigr ) + \sum _{h \ne i} W_{\xi _{h} }\bigl (\frac{x - \xi ^{(2)}_{h, \varepsilon }}{\varepsilon }\bigr ) \bigr ) \\&\cdot \eta _{\varepsilon }(x) \frac{(x_{j} - y_{j})}{|x - y|^{N}} dy dx;\\ H_{3}= & {} \int _{B_{d}(\xi ^{(1)}_{i, \varepsilon })} \int _{{\mathbb {R}}^{N}} [u_{\varepsilon }^{(1)}(y)]^{2}\bigl ( \phi _{\varepsilon }^{(1)}(x) +\phi _{\varepsilon }^{(2)}(x)\bigr ) \eta _{\varepsilon }(x) \frac{(x_{j} - y_{j})}{|x - y|^{N}} dy dx;\\ H_{4}= & {} \int _{B_{d}(\xi ^{(1)}_{i, \varepsilon })} \int _{{\mathbb {R}}^{N}} W_{\xi _{i}}\bigl (\frac{y - \xi ^{(1)}_{i, \varepsilon }}{\varepsilon }\bigr )\bigl ( \sum _{h \ne i } W_{\xi _{h}}\bigl (\frac{y - \xi ^{(1)}_{h, \varepsilon }}{\varepsilon }\bigr ) + \phi _{\varepsilon }^{(1)}(y) \bigr ) \\&\cdot \bigl ( W_{\xi _{i} }\bigl (\frac{x - \xi ^{(1)}_{i, \varepsilon }}{\varepsilon }\bigr ) + W_{\xi _{i } } \bigl (\frac{x - \xi _{i, \varepsilon }^{(2)}}{\varepsilon } \bigr )\bigr ) \eta _{\varepsilon } \frac{(x_{j} - y_{j})}{|x - y|^{N}} dy dx;\\ H_{5}= & {} \int _{B_{d}(\xi ^{(1)}_{i, \varepsilon })} \int _{{\mathbb {R}}^{N}}u_{\varepsilon }^{(1)}(y) \bigl ( \sum _{h \ne i } W_{\xi _{h}}\bigl (\frac{y - \xi ^{(1)}_{h, \varepsilon }}{\varepsilon }\bigr ) + \phi _{\varepsilon }^{(1)}(y)\bigr ) \\&\cdot \bigl ( W_{\xi _{i} }\bigl (\frac{x - \xi ^{(1)}_{i, \varepsilon }}{\varepsilon }\bigr ) + W_{\xi _{i } } \bigl (\frac{x - \xi _{i, \varepsilon }^{(2)}}{\varepsilon } \bigr )\bigr ) \eta _{\varepsilon } \frac{(x_{j} - y_{j})}{|x - y|^{N}} dy dx. \end{aligned}$$

It follows from Proposition 2.8 and the properties of \(W_{\xi }(x)\) that

$$\begin{aligned} H_{1}= & {} \int _{{\mathbb {R}}^{N}} \int _{{\mathbb {R}}^{N}}W^{2}_{\xi _{i}}\bigl (\frac{y - \xi ^{(1)}_{i, \varepsilon }}{\varepsilon }\bigr ) \bigl ( W_{\xi _{i} }\bigr (\frac{x - \xi ^{(1)}_{i, \varepsilon }}{\varepsilon }\bigr ) + W_{\xi _{i } } \bigl (\frac{x - \xi _{i, \varepsilon }^{(2)}}{\varepsilon } \bigr )\bigr ) \eta _{\varepsilon }(x) \frac{(x_{j} - y_{j})}{|x - y|^{N}} dy dx \\&+ O\Bigl (e^{-\frac{\sigma }{\varepsilon }}\Bigr ). \end{aligned}$$

By the exponential decay of \(W_{\xi _{i}}\) at infinity, we have

$$\begin{aligned} H_{2}= & {} \varepsilon ^{N+1} \int _{B_{d/\varepsilon }(0)} \int _{{\mathbb {R}}^{N}} [u_{\varepsilon }^{(1)}(\varepsilon y + \xi _{i, \varepsilon }^{(1)})]^{2}\bigl ( \sum _{h \ne i } W_{\xi _{h} }\bigl (x + \frac{\xi _{i, \varepsilon }^{(1)} - \xi _{h, \varepsilon }^{(1)}}{\varepsilon }\bigr ) \\&+ \sum _{h \ne i} W_{\xi _{h}}\bigl ( x + \frac{\xi _{i, \varepsilon }^{(1)} - \xi _{h, \varepsilon }^{(2)}}{\varepsilon } \bigr ) \bigr ) \eta _{i, \varepsilon }(x) \frac{(x_{j} - y_{j})}{|x - y|^{N}} dy dx\\= & {} \varepsilon ^{N+1} \int _{B_{d/\varepsilon }(0)} \int _{{\mathbb {R}}^{N} \setminus B_{\frac{d}{2\varepsilon }} (0)} [u_{\varepsilon }^{(1)}(\varepsilon y + \xi _{i, \varepsilon }^{(1)})]^{2}\bigl ( \sum _{h \ne i } W_{\xi _{h} }(x + \frac{\xi _{i, \varepsilon }^{(1)} - \xi _{h, \varepsilon }^{(1)}}{\varepsilon }) \\&+ \sum _{h \ne i} W_{\xi _{h}}\bigl ( x + \frac{\xi _{i, \varepsilon }^{(1)} - \xi _{h, \varepsilon }^{(2)}}{\varepsilon } \bigr ) \bigr ) \cdot \eta _{i, \varepsilon }(x) \frac{(x_{j} - y_{j})}{|x - y|^{N}} dy dx + O\bigl (e^{-\frac{\tau }{\varepsilon }}\bigr ) \\= & {} O\bigl ( \varepsilon ^{2N}\bigr ). \end{aligned}$$

Moreover, by Hardy-Littlewood-Sobolev inequality and Lemma 2.6, we have

$$\begin{aligned} |H_{3}|\le & {} \int _{B_{d}(\xi ^{(1)}_{i, \varepsilon })} \int _{{\mathbb {R}}^{N}} [u_{\varepsilon }^{(1)}(y)]^{2}\bigl ( |\phi _{\varepsilon }^{(1)}(x)| +|\phi _{\varepsilon }^{(2)}(x)|\bigr ) \frac{|\eta (x)|}{|x - y|^{N-1}} dy dx \\\le & {} C \Vert u_{\varepsilon }^{(1)}\Vert _{L^{\frac{4N}{N+1}}({\mathbb {R}}^{N})}^{2} \bigl (\Vert \phi _{\varepsilon }^{(1)}\Vert _{L^{\frac{4N}{N+1}}({\mathbb {R}}^{N})} + \Vert \phi _{\varepsilon }^{(2)}\Vert _{L^{\frac{4N}{N+1}}({\mathbb {R}}^{N})} \bigr ) \Vert \eta _{\varepsilon }\Vert _{L^{\frac{4N}{N+1}}({\mathbb {R}}^{N})} \\\le & {} C \varepsilon ^{\frac{N+2}{2}} \bigl ( \Vert \phi _{\varepsilon }^{(1)}\Vert _{\varepsilon } + \Vert \phi _{\varepsilon }^{(2)}\Vert _{\varepsilon } \bigr ) =O \bigl (\varepsilon ^{\min \{N+1+m, N+3\}}\bigr ). \end{aligned}$$

Similarly, by Hardy-Littlewood-Sobolev inequality

$$\begin{aligned} |H_{4}|\le & {} C \Bigl ( \int _{{\mathbb {R}}^{N}} \Bigl [ \sum _{h \ne i} W_{\xi _{i}}\Bigl (\frac{x - \xi _{i, \varepsilon }^{(1)}}{\varepsilon }\Bigr ) W_{\xi _{h}}\Bigl (\frac{x - \xi _{h, \varepsilon }^{(1)}}{\varepsilon }\Bigr ) \Bigr ]^{\frac{2N}{N+1}} \Bigr )^{\frac{N+1}{2N}} \Bigl ( \Vert W_{\xi _{i}}\Bigl (\frac{x - \xi _{i, \varepsilon }^{(1)}}{\varepsilon }\Bigr )\Vert _{L^{\frac{4N}{N+1}}({\mathbb {R}}^{N})} \\&+ \Vert W_{\xi _{i}}\Bigl (\frac{x - \xi _{i, \varepsilon }^{(2)}}{\varepsilon }\Bigr ) \Vert _{L^{\frac{4N}{N+1}}({\mathbb {R}}^{N})}\Bigr ) \Vert \eta _{\varepsilon }\Vert _{L^{\frac{4N}{N+1}}({\mathbb {R}}^{N})} \\&+ C \Vert W_{\xi _{i}}\Bigl (\frac{x - \xi _{i, \varepsilon }^{(1)}}{\varepsilon }\Bigr )\Vert _{L^{\frac{4N}{N+1}}({\mathbb {R}}^{N})} \Vert \phi _{\varepsilon }\Vert _{L^{\frac{4N}{N+1}}({\mathbb {R}}^{N})}\bigl ( \Vert W_{\xi _{i}}\bigl (\frac{x - \xi _{i, \varepsilon }^{(1)}}{\varepsilon }\bigr )\Vert _{L^{\frac{4N}{N+1}}({\mathbb {R}}^{N})} \\&+ \Vert W_{\xi _{i}}\bigl (\frac{x - \xi _{i, \varepsilon }^{(2)}}{\varepsilon }\bigr ) \Vert _{L^{\frac{4N}{N+1}}({\mathbb {R}}^{N})}\bigr ) \Vert \eta _{\varepsilon }\Vert _{L^{\frac{4N}{N+1}}({\mathbb {R}}^{N})} \\= & {} O\bigl ( \varepsilon ^{N+1} \sum _{h \ne i} e^{-\frac{\sigma |\xi ^{(1)}_{i, \varepsilon }- \xi ^{(1)}_{h, \varepsilon } |}{\varepsilon }}\bigr ) + O\bigl ( \varepsilon ^{\min \{N+1+m, N+3\}}\bigr ) = O\bigl ( \varepsilon ^{\min \{N+1+m, N+3\}}\bigr ). \end{aligned}$$

On the other hand, let

$$\begin{aligned} H_{5} = H_{51} + H_{52} + H_{53} + H_{54}, \end{aligned}$$

where

$$\begin{aligned} H_{51}= & {} \int _{B_{d}(\xi ^{(1)}_{i, \varepsilon })} \int _{{\mathbb {R}}^{N}}u_{\varepsilon }^{(1)}(y) \phi _{\varepsilon }^{(1)}(y) \bigl ( W_{\xi _{i}}\bigl (\frac{x - \xi _{i, \varepsilon }^{(1)}}{\varepsilon }\bigr )+ W_{\xi _{i}}\bigl (\frac{x - \xi _{i, \varepsilon }^{(2)}}{\varepsilon }\bigr )\bigr ) \eta _{\varepsilon } \frac{(x_{j} - y_{j})}{|x - y|^{N}} dy dx; \\ H_{52}= & {} \int _{B_{d}(\xi ^{(1)}_{i, \varepsilon })} \int _{{\mathbb {R}}^{N}}W_{\xi _{i}}\bigl (\frac{y - \xi _{i, \varepsilon }^{(1)}}{\varepsilon }\bigr ) \sum _{h \ne i } W_{\xi _{h}}\bigl (\frac{x - \xi _{h, \varepsilon }^{(1)}}{\varepsilon }\bigr ) \\&\cdot \bigl ( W_{\xi _{i}}\bigl (\frac{x - \xi _{i, \varepsilon }^{(1)}}{\varepsilon }\bigr ) + W_{\xi _{i}}\bigl (\frac{x - \xi _{i, \varepsilon }^{(2)}}{\varepsilon }\bigr )\bigr ) \eta _{\varepsilon } \frac{(x_{j} - y_{j})}{|x - y|^{N}} dy dx; \\ H_{53}= & {} \int _{B_{d}(\xi ^{(1)}_{i, \varepsilon })} \int _{{\mathbb {R}}^{N}}\phi _{\varepsilon }^{(1)}(y) \sum _{h \ne i } W_{\xi _{h}}\bigl (\frac{y - \xi _{h, \varepsilon }^{(1)}}{\varepsilon }\bigr ) \bigl ( W_{\xi _{i}}\bigl (\frac{x - \xi _{i, \varepsilon }^{(1)}}{\varepsilon }\bigr ) + W_{\xi _{i}}\bigl (\frac{x - \xi _{i, \varepsilon }^{(2)}}{\varepsilon }\bigr )\bigr ) \\&\cdot \eta _{\varepsilon } \frac{(x_{j} - y_{j})}{|x - y|^{N}} dy dx; \\ H_{54 }= & {} \int _{B_{d}(\xi ^{(1)}_{i, \varepsilon })} \int _{{\mathbb {R}}^{N}} \bigl ( \sum _{h \ne i } W_{\xi _{h}}\bigl (\frac{y - \xi _{h, \varepsilon }^{(1)}}{\varepsilon }\bigr ) \bigr )^{2} \bigl ( W_{\xi _{i}}\bigl (\frac{x - \xi _{i, \varepsilon }^{(1)}}{\varepsilon }\bigr ) + W_{\xi _{i}}\bigl (\frac{x - \xi _{i, \varepsilon }^{(2)}}{\varepsilon }\bigr )\bigr ) \eta _{\varepsilon } \frac{(x_{j} - y_{j})}{|x - y|^{N}} dy dx. \end{aligned}$$

As before, by Hardy-Littlewood-Sobolev inequality, we have

$$\begin{aligned} H_{51} =O\bigl ( \varepsilon ^{\min \{N+1+m, N+3\}}\bigr ) , \quad H_{52} =O\bigl (e^{-\frac{\sigma }{\varepsilon }} \bigr ), \quad \text {and } \quad H_{53} = O\bigl ( \varepsilon ^{\min \{N+1+m, N+3\}}\bigr ) . \end{aligned}$$

By direct computations,

$$\begin{aligned}&|H_{54}|\\&\quad = |\int _{B_{d}(\xi ^{(1)}_{i, \varepsilon })} \int _{{\mathbb {R}}^{N}} \sum _{h \ne i } W^{2}_{\xi _{h}}\bigl (\frac{y - \xi _{h, \varepsilon }^{(1)}}{\varepsilon }\bigr ) \bigl ( W_{\xi _{i}}\bigl (\frac{x - \xi _{i, \varepsilon }^{(1)}}{\varepsilon }\bigr ) + W_{\xi _{i}}\bigl (\frac{x - \xi _{i, \varepsilon }^{(2)}}{\varepsilon }\bigr )\bigr ) \eta _{\varepsilon } \frac{(x_{j} - y_{j})}{|x - y|^{N}} dy dx | \\&\qquad +O\bigl (e^{-\frac{\sigma }{\varepsilon }} \bigr ) \\&\quad \le |\int _{B_{d}(\xi ^{(1)}_{i, \varepsilon })} \int _{{\mathbb {R}}^{N} \setminus B_{2d}(\xi ^{(1)}_{i, \varepsilon })} \sum _{h \ne i } W^{2}_{\xi _{h}}\bigl (\frac{y - \xi _{h, \varepsilon }^{(1)}}{\varepsilon }\bigr ) \bigl ( W_{\xi _{i}}\bigl (\frac{x - \xi _{i, \varepsilon }^{(1)}}{\varepsilon }\bigr ) + W_{\xi _{i}}\bigl (\frac{x - \xi _{i, \varepsilon }^{(2)}}{\varepsilon }\bigr )\bigr ) |x - y|^{1 - N}dy dx | \\&\qquad + |\int _{B_{d}(\xi ^{(1)}_{i, \varepsilon })} \int _{ B_{2d}(\xi ^{(1)}_{i, \varepsilon })} \sum _{h \ne i } W^{2}_{\xi _{h}}\bigl (\frac{y - \xi _{h, \varepsilon }^{(1)}}{\varepsilon }\bigr ) \bigl ( W_{\xi _{i}}\bigl (\frac{x - \xi _{i, \varepsilon }^{(1)}}{\varepsilon }\bigr ) + W_{\xi _{i}}\bigl (\frac{x - \xi _{i, \varepsilon }^{(2)}}{\varepsilon }\bigr )\bigr ) |x - y|^{1 - N}dy dx | \\&\qquad +O\bigl (e^{-\frac{\sigma }{\varepsilon }} \bigr ) \\&\quad \le C \varepsilon ^{2N} \sum _{h \ne i} \int _{B_{d/\varepsilon }(0)} \int _{{\mathbb {R}}^{N} \setminus B_{2d/\varepsilon }(0)} W^{2}_{\xi _{h}} (y + \frac{\xi ^{(1)}_{i, \varepsilon } - \xi ^{(1)}_{h, \varepsilon }}{\varepsilon }) \Bigl ( W_{\xi _{i}}(x) + W_{\xi _{i}} \bigl (x + \frac{\xi _{i, \varepsilon }^{(1)} - \xi _{i, \varepsilon }^{(2)}}{\varepsilon }\bigr ) \Bigr ) \\&\qquad + O\bigl (e^{-\frac{\sigma }{\varepsilon }} \bigr ) \\&\quad = O\Bigl ( \varepsilon ^{2N} \sum _{h \ne i} \int _{{\mathbb {R}}^{N}}W^{2}_{\xi _{h}} \bigl (y + \frac{\xi ^{(1)}_{i, \varepsilon } - \xi ^{(1)}_{h, \varepsilon }}{\varepsilon }\bigr ) dy \cdot \int _{{\mathbb {R}}^{N}} \Bigl ( W_{\xi _{i}}(x) + W_{\xi _{i}} \bigl (x + \frac{\xi _{i, \varepsilon }^{(1)} - \xi _{i, \varepsilon }^{(2)}}{\varepsilon }\bigr ) \Bigr ) dx \Bigr ) \\&\qquad + O\bigl (e^{-\frac{\sigma }{\varepsilon }} \bigr )\\&\quad = O\Bigl (\varepsilon ^{2N}\Bigr ). \end{aligned}$$

Therefore,

$$\begin{aligned}&\int _{B_{d}(\xi ^{(1)}_{i, \varepsilon })} \int _{{\mathbb {R}}^{N}} [u_{\varepsilon }^{(1)}(y)]^{2} \bigl ( u_{\varepsilon }^{(1)}(x) + u_{\varepsilon }^{(2)}(x) \bigr ) \eta _{\varepsilon }(x) \frac{(x_{j} - y_{j})}{|x - y|^{N}} dy dx \\&\quad = \int _{{\mathbb {R}}^{N}} \int _{{\mathbb {R}}^{N}}W^{2}_{\xi _{i}}\bigl (\frac{y - \xi ^{(1)}_{i, \varepsilon }}{\varepsilon }\bigr ) \bigl ( W_{\xi _{i} }\bigl (\frac{x - \xi ^{(1)}_{i, \varepsilon }}{\varepsilon }\bigr ) + W_{\xi _{i } } \bigl (\frac{x - \xi _{i, \varepsilon }^{(2)}}{\varepsilon }\bigr )\bigr ) \eta _{\varepsilon }(x) \frac{(x_{j} - y_{j})}{|x - y|^{N}} dy dx \\&\qquad + O\bigl (\varepsilon ^{\min \{N+1+ m, N+3\}}\bigr ). \end{aligned}$$

Through the similar argument, we have

$$\begin{aligned}&\int _{B_{d}(\xi ^{(1)}_{i, \varepsilon })} \int _{{\mathbb {R}}^{N}} \bigl ( u_{\varepsilon }^{(1)}(y) + u_{\varepsilon }^{(2)}(y) \bigr ) \eta _{\varepsilon }(y) [u_{\varepsilon }^{(2)}(x)]^{2} \frac{(x_{j} - y_{j})}{|x - y|^{N}} dy dx \\&\quad = \int _{{\mathbb {R}}^{N}} \int _{{\mathbb {R}}^{N}} \bigl ( W_{\xi _{i} }\bigl (\frac{y - \xi ^{(1)}_{i, \varepsilon }}{\varepsilon }\bigr ) + W_{\xi _{i } } \bigl (\frac{y - \xi _{i, \varepsilon }^{(2)}}{\varepsilon } \bigr )\bigr ) \eta _{\varepsilon }(y) W^{2}_{\xi _{i}}\bigl (\frac{x - \xi ^{(1)}_{i, \varepsilon }}{\varepsilon }\bigr ) \frac{(x_{j} - y_{j})}{|x - y|^{N}} dy dx \\&\qquad + O\bigl (\varepsilon ^{\min \{N+1+ m, N+3\}}\bigr ). \end{aligned}$$

Hence, the result follows. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Long, W., Tang, Z. et al. Uniqueness of positive bound states with multiple bumps for Schrödinger–Poisson system. Calc. Var. 60, 240 (2021). https://doi.org/10.1007/s00526-021-02108-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02108-0

AMS Subject Classifications

Navigation