Skip to main content
Log in

Multi-bump solutions of Schrödinger–Poisson equations with steep potential well

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study a system of Schrödinger–Poisson equation

$$\left\{\begin{array}{ll}-\Delta u+(\lambda a(x)+a_0(x))u+K(x)\phi u=|u|^{p-2}u, & \quad x \in\mathbb{R}^3, \\- \Delta \phi=K(x)u^2,& \quad x \in \mathbb{R}^3 \end{array} \right.$$

where \({p \in (4,6)}\) and \({\lambda}\) is a parameter. We require that \({a(x) \geq 0}\) and has a bounded potential well \({\Omega = a^{-1}(0)}\). Combining this with other suitable assumptions on Ω, a 0 and K, we obtain the existence of multi-bump-type solution \({u_\lambda}\) when \({\lambda}\) is large via variational methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benci V., Fortunato D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Benci V., Fortunato D.: Solitary waves of the nonlinear Klein–Gordon equation couple with Maxwell equations. Rev. Math. Phys. 14, 409–420 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Salvatore A.: Multiple solitary waves for a non-homogeneous Schrödinger–Maxwell system in \({{\mathbb{R}}^3}\). Adv. Nonlinear Stud. 6, 157–169 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Bartsh T., Wang Z.-Q.: Multiple positive solutions for a nonlinear Schrödinger equations. Z. Angew. Math. Phys. 51, 366–384 (2000)

    Article  MathSciNet  Google Scholar 

  5. Ding Y., Tanaka K.: Multiplicity of positive solutions of a nonlinear Schrödinger equation. Manuscr. Math. 112, 109–135 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambrosetti A.: On Schrödinger–Poisson systems. Milan J. Math. 76, 257–274 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coclite G.M.: A multiplicity result for the Schrödinger–Maxwell equations. Commun. Appl. Anal. 7, 417–423 (2003)

    MathSciNet  MATH  Google Scholar 

  8. D’Aprile T., Wei J.C.: On bound states concentrating on spheres for the Maxwell–Schrödinger equations. SIAM J. Math. Anal. 15, 321–342 (2005)

    Article  MathSciNet  Google Scholar 

  9. Azzollini A., Pomponio A.: Ground state solutions for the nonlinear Schrödinger–Maxwell equations. J. Math. Anal. Appl. 345, 90–108 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang Z.P., Zhou H.S.: Positive solutions for a nonlinear stationary Schrödinger–Poisson system in \({\mathbb{R}^3}\). Discrete Contin. Dyn. Syst. 18, 809–816 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhao L.G., Zhao F.K.: On the existence of solutions for the Schrödinger–Poisson equations. J. Math. Anal. Appl. 346, 155–169 (2003)

    Article  Google Scholar 

  12. Jiang Y.S., Zhou H.S.: Schrödinger–Poisson system with steep well potential. J. Differ. Equ. 251, 582–608 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhao L.G., Liu H., Zhao F.K.: Existence and concentration of solutions for the Schrödinger–Poisson equations with steep well potential. J. Differ. Equ. 255, 1–23 (2013)

    Article  MATH  Google Scholar 

  14. Cerami G., Vaira G.: Positive solution for some non-autonomous Schrödinger–Poisson systems. J. Differ. Equ. 248, 521–543 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ianni I., Vaira G.: Solutions of the Schrödinger–Poisson problem concentrating on spheres, part I: necessary condition. Math. Models Methods Appl. Sci. 19, 707–720 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ianni I.: Solutions of the Schrödinger–Poisson problem concentrating on spheres, part ii: existence. Math. Models Methods Appl. Sci. 19, 877–910 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ruiz D.: Semiclassical states for coupled Schrödinger–Maxwell concentration around a sphere. Math. Models Methods Appl. Sci. 15, 141–164 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ruiz D., Vaira G.: Cluster solutions for the Schrödinger–Poisson–Slater problem around a local minimum of potential. Rev. Mat. Iberoam. 27, 253–271 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li G.B., Peng S.J., Wang C.H.: Multi-bump solutions for the nonlinear Schrödinger–Poisson system. J. Math. Phys. 52, 053505 (2011)

    Article  MathSciNet  Google Scholar 

  20. Wang J., Xu J.X., Zhang F.B., Chen X.M.: Existence of multi-bump solutions for a semilinear Schrödinger–Poisson system. Nonlinearity 26, 1377–1399 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bartsh T., Tang Z.: Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential. Discrete Contin. Dyn. Syst. 33, 7–26 (2013)

    MathSciNet  Google Scholar 

  22. D’Aprile T., Mugnai D.: Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations. Proc. Roy. Soc. Edinb. Sect. A 134, 893–906 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bartsch T., Pankov A., Wang Z.-Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 549–569 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Reed M., Simon B.: Schrödinger semigroops. Bull. Am. Math. Soc. (N.S.) 7, 447–526 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiwang Ma.

Additional information

Research supported by the Specialized Fund for the Doctoral Program of Higher Education and the National Natural Science Foundation of China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ma, S. Multi-bump solutions of Schrödinger–Poisson equations with steep potential well. Z. Angew. Math. Phys. 66, 1615–1631 (2015). https://doi.org/10.1007/s00033-014-0490-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0490-x

Mathematics Subject Classification

Keywords

Navigation