Skip to main content
Log in

Strict convexity and \(C^1\) regularity of solutions to generated Jacobian equations in dimension two

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We present a proof of strict g-convexity in 2D for solutions of generated Jacobian equations with a g-Monge–Ampère measure bounded away from 0. Subsequently this implies \(C^1\) differentiability in the case of a g-Monge–Ampère measure bounded from above. Our proof follows one given by Trudinger and Wang in the Monge–Ampère case. Thus, like theirs, our argument is local and yields a quantitative estimate on the g-convexity. As a result our differentiability result is new even in the optimal transport case: we weaken previously required domain convexity conditions. Moreover in the optimal transport case and the Monge–Ampère case our key assumptions, namely A3w and domain convexity, are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We use the convention that subscripts before the comma denote differentiation with respect to x, and subscripts after the comma (which are not z) denote differentiation with respect to y.

References

  1. Alexandroff, A.: Smoothness of the convex surface of bounded Gaussian curvature. C. R. (Doklady) Acad. Sci. URSS (N.S.) 36, 195–199 (1942)

    MathSciNet  MATH  Google Scholar 

  2. Caffarelli, L.A.: A localization property of viscosity solutions to the Monge–Ampère equation and their strict convexity. Ann. Math. 131(1), 129–134 (1990)

    Article  MathSciNet  Google Scholar 

  3. Chen, S., Wang, X.J.: Strict convexity and \(C^{1,\alpha }\) regularity of potential functions in optimal transportation under condition A3w. J. Differ. Equ. 260(2), 1954–1974 (2016)

    Article  Google Scholar 

  4. Figalli, A., Kim, Y.H., McCann, R.J.: Hölder continuity and injectivity of optimal maps. Arch. Ration. Mech. Anal. 209(3), 747–795 (2013)

    Article  MathSciNet  Google Scholar 

  5. Figalli, A., Loeper, G.: \(C^1\) regularity of solutions of the Monge–Ampère equation for optimal transport in dimension two. Calc. Var. Partial Differ. Equ. 35(4), 537–550 (2009)

    Article  Google Scholar 

  6. Guillen, N.: A primer on generated Jacobian equations: geometry, optics, economics. Not. Am. Math. Soc. 66(9), 1401–1411 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Guillen, N., Kitagawa, J.: On the local geometry of maps with \(c\)-convex potentials. Calc. Var. Partial Differ. Equ. 52(1–2), 345–387 (2015)

    Article  MathSciNet  Google Scholar 

  8. Guillen, N., Kitagawa, J.: Pointwise estimates and regularity in geometric optics and other generated Jacobian equations. Commun. Pure Appl. Math. 70(6), 1146–1220 (2017)

    Article  MathSciNet  Google Scholar 

  9. Heinz, E.: Über die Differentialungleichung \(0<\alpha \le rt-s^{2}\le \beta <\infty \). Math. Z 72, 107–126 (1959/1960)

  10. Jeong, S.: Local Hölder regularity of solutions to generated Jacobian equations. Pure Appl. Anal. 3(1), 163–188 (2021)

    Article  MathSciNet  Google Scholar 

  11. Jhaveri, Y.: Partial regularity of solutions to the second boundary value problem for generated Jacobian equations. Methods Appl. Anal. 24(4), 445–475 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Jiang, F., Trudinger, N.S.: On the second boundary value problem for Monge–Ampère type equations and geometric optics. Arch. Ration. Mech. Anal. 229(2), 547–567 (2018)

    Article  MathSciNet  Google Scholar 

  13. Kim, Y.H., McCann, R.J.: Continuity, curvature, and the general covariance of optimal transportation. J. Eur. Math. Soc. (JEMS) 12(4), 1009–1040 (2010)

    Article  MathSciNet  Google Scholar 

  14. Liu, J., Trudinger, N.S.: On the classical solvability of near field reflector problems. Discrete Contin. Dyn. Syst. 36(2), 895–916 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Loeper, G.: On the regularity of solutions of optimal transportation problems. Acta Math. 202(2), 241–283 (2009)

    Article  MathSciNet  Google Scholar 

  16. Ma, X.N., Trudinger, N.S., Wang, X.J.: Regularity of potential functions of the optimal transportation problem. Arch. Ration. Mech. Anal. 177(2), 151–183 (2005)

    Article  MathSciNet  Google Scholar 

  17. Rankin, C.: Distinct solutions to generated jacobian equations cannot intersect. Bull. Aust. Math. Soc. 102(3), 462–470 (2020)

    Article  MathSciNet  Google Scholar 

  18. Trudinger, N.S.: On the local theory of prescribed Jacobian equations. Discrete Contin. Dyn. Syst. 34(4), 1663–1681 (2014)

    Article  MathSciNet  Google Scholar 

  19. Trudinger, N.S.: On the local theory of prescribed Jacobian equations revisited. Math. Eng. 3(6), 17 (2021)

    Article  MathSciNet  Google Scholar 

  20. Trudinger, N.S., Wang, X.J.: The Monge–Ampère equation and its geometric applications. In: Handbook of geometric analysis. No. 1, Adv. Lect. Math. (ALM), vol. 7, pp. 467–524. Int. Press, Somerville, MA (2008)

  21. Vétois, J.: Continuity and injectivity of optimal maps. Calc. Var. Partial Differ. Equ. 52(3–4), 587–607 (2015)

    Article  MathSciNet  Google Scholar 

  22. Villani, C.: Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338. Springer-Verlag, Berlin (2009). Old and new

Download references

Acknowledgements

Thanks to Neil Trudinger who suggested extending the proof in [20] to generated Jacobian equations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cale Rankin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is supported by an Australian Government Research Training Program (RTP) Scholarship.

Proof of main lemma

Proof of main lemma

In this appendix we provide the proof of Lemma 1.

Proof

We first compute a differentiation formula for second derivatives along g-segments. We suppose

$$\begin{aligned} \frac{g_y}{g_z}\left( x_\theta ,y_0,z_0\right) = \theta q_1+(1-\theta )q_0, \end{aligned}$$
(31)

and set \(q = q_1-q_0\). We begin with a formula for first derivatives. Since

$$\begin{aligned} \frac{d}{d\theta } = \left( \dot{x_\theta }\right) _iD_{x_i} \end{aligned}$$
(32)

we need to compute \((\dot{x_\theta })_i\). Differentiate (31) with respect to \(\theta \) and obtainFootnote 1

$$\begin{aligned} \left[ \frac{g_{i,m}}{g_z}-\frac{g_{i,z}g_{,m}}{g_z^2}\right] \left( \dot{x_\theta }\right) _i = q_m, \end{aligned}$$

from which it follows that

$$\begin{aligned} \left( \dot{x_\theta }\right) _i = g_zE^{m,i}q_m, \end{aligned}$$

where \(E^{m,i}\) denotes the m, i\({\text {th}}\) entry of \(E^{-1}\). Thus (32) becomes

$$\begin{aligned} \frac{d}{d\theta } = g_zE^{m,i}q_mD_{x_i}. \end{aligned}$$
(33)

Using this expression to compute second derivatives we have

$$\begin{aligned} \frac{d^2}{d\theta ^2}&= g_zE^{n,j}D_{x_j}\left( g_zE^{m,i}D_{x_i}\right) q_mq_n\\&= g_{z}^2E^{n,j}E^{m,i}q_mq_nD_{x_ix_j} +g_z^2q_mq_nE^{n,j}D_{x_j}\left( E^{m,i}\right) D_{x_i}\\&\quad + g_zg_{j,z}E^{n,j}E^{m,i}q_mq_nD_{x_i}. \end{aligned}$$

The formula for differentiating an inverse yields

$$\begin{aligned} \frac{d^2}{d\theta ^2}&= \left( \dot{x_\theta }\right) _i\left( \dot{x_\theta }\right) _j D_{x_ix_j} -g_z^2q_mq_nE^{n,j}E^{m,a}D_{x_j}\left( E_{ab}\right) E^{b,i}D_{x_i}\nonumber \\&\quad + g_zg_{j,z}E^{n,j}E^{m,i}q_mq_nD_{x_i}. \end{aligned}$$
(34)

Now compute

$$\begin{aligned} D_{x_j}\left( E_{ab}\right)&= D_{x_j}\left[ g_{a,b}-\frac{g_{a,z}g_{,b}}{g_z}\right] \nonumber \\&= g_{aj,b}-\frac{g_{aj,z}g_{,b}}{g_z}-\frac{g_{a,z}g_{j,b}}{g_z}+\frac{g_{j,z}g_{a,z}g_{,b}}{g_z^2}\nonumber \\&= -\frac{g_{a,z}}{g_z}E_{jb} +E_{l,b}D_{p_l}g_{aj} . \end{aligned}$$
(35)

Here we have used that

$$\begin{aligned} E_{l,b}D_{p_l}g_{aj}(\cdot ,Y(\cdot ,u,p),Z(\cdot ,u,p)) = g_{aj,b}-\frac{g_{aj,z}g_{,b}}{g_z}, \end{aligned}$$

which follows by computing \(D_{p_l}g_{aj}\), differentiating (4) with respect to p to express \(Z_p\) in terms of \(Y_p\), and employing \(E^{i,j} = D_{p_j}Y^i\) (which is obtained via calculations similar to those for (7)).

Substitute (35) into (34) to obtain

$$\begin{aligned} \frac{d^2}{d\theta ^2}&= \left( \dot{x_\theta }\right) _i\left( \dot{x_\theta }\right) _j D_{x_ix_j} -g_z^2q_mq_nE^{n,j}E^{m,a}E_{l,b}D_{p_l}g_{aj}E^{b,i}D_{x_i}\\&\quad +\left[ g_zg_{a,z}E^{n,j}E^{m,a}E_{j,b}E^{b,i}D_{x_i+}g_zg_{j,z}E^{n,j}E^{m,i}D_{x_i}\right] q_mq_n\\&= \left( \dot{x_\theta }\right) _i\left( \dot{x_\theta }\right) _j D_{x_ix_j} -g_z^2q_mq_nE^{n,j}E^{m,a}D_{p_i}g_{aj}D_{x_i}\\&\quad \quad +\left[ g_zg_{a,z}E^{n,i}E^{m,a}D_{x_i+}g_zg_{j,z}E^{n,j}E^{m,i}D_{x_i}\right] q_mq_n\\&= \left( \dot{x_\theta }\right) _i\left( \dot{x_\theta }\right) _j\left( D_{x_i,x_j}-D_{p_k}g_{ij}D_{x_k}\right) \\&\quad +g_{j,z}\left( E^{m,j}q_m\frac{d}{d\theta }+E^{n,j}q_n\frac{d}{d\theta }\right) , \end{aligned}$$

where in the last equality we swapped the dummy indices i and a on the second term to allow us to collect like terms and also used (33).

Now let’s use this identity to compute \(h''(\theta )\). We have

$$\begin{aligned} h''(\theta )&= \left[ D_{ij}u\left( x_{\theta }\right) -g_{ij}\left( x_{\theta },y_0,z_0\right) \right. \\&\left. \quad -D_{p_k}g_{ij}\left( x_{\theta },y_0,z_0\right) \left( D_ku\left( x_\theta \right) -D_kg\left( x_{\theta },y_0,z_0\right) \right) \right] \left( \dot{x_\theta }\right) _i\left( \dot{x_\theta }\right) _j \\&\quad +g_{j,z}\left( E^{m,j}q_mh'+E^{n,j}q_nh'\right) . \end{aligned}$$

Terms on the final line are bounded below by \(-K|h'(\theta )|\). Now after adding and subtracting \(g_{ij}(x_{\theta },y,z)\) for \(y=Y_u(x_\theta ),z=Z_u(x_\theta )\) we have

$$\begin{aligned} h''(\theta )&\ge \left[ D_{ij}u\left( x_{\theta }\right) -g_{ij}\left( x_{\theta },y,z\right) \right] \left( \dot{x_\theta }\right) _i\left( \dot{x_\theta }\right) _j + \left[ g_{ij}\left( x_{\theta },y,z\right) -g_{ij}\left( x_{\theta },y_0,z_0\right) \right. \\&\left. \quad -D_{p_k}g_{ij}\left( x_{\theta },y_0,z_0\right) \left( D_ku\left( x_\theta \right) -D_kg\left( x_{\theta },y_0,z_0\right) \right) \right] \left( \dot{x_\theta }\right) _i\left( \dot{x_\theta }\right) _j \\&\quad -K|h'(\theta )|. \end{aligned}$$

Set \(u_0 = g(x_{\theta },y_0,z_0), \ u_1=u(x_\theta )\) \(p_0 = g_x(x_{\theta },y_0,z_0),\) and \( p_1 = Du(x_\theta )\). Then rewriting in terms of the matrix A we have

$$\begin{aligned} h''(\theta )&\ge \big [D_{ij}u(x_{\theta }) -g_{ij}(x_{\theta },y,z)\big ](\dot{x_\theta })_i(\dot{x_\theta })_j +\big [A_{ij}(x_{\theta },u_1,p_1)-A_{ij}(x_{\theta },u_0,p_0)\\&\quad -D_{p_k}A_{ij}(x_{\theta },u_0,p_0)(p_1-p_0)\big ](\dot{x_\theta })_i(\dot{x_\theta })_j -K|h'(\theta )|\\&= \big [D_{ij}u(x_{\theta }) -g_{ij}(x_{\theta },y,z)\big ](\dot{x_\theta })_i(\dot{x_\theta })_j + A_{ij,u}(x_\theta ,u_\tau ,p)(u_1-u_0)(\dot{x_\theta })_i(\dot{x_\theta })_j\\&\quad +\big [A_{ij}(x_{\theta },u_0,p_1)-A_{ij}(x_{\theta },u_0,p_0)\\&\quad -D_{p_k}A_{ij}(x_{\theta },u_0,p_0)(p_1-p_0)\big ](\dot{x_\theta })_i(\dot{x_\theta })_j-K|h'(\theta )| \end{aligned}$$

Here \(u_\tau = \tau u +(1-\tau )u_0\) results from a Taylor series. Another Taylor series for \(f(t):= A_{ij}(x_{\theta },u_0,t p_1+(1-t)p_0)\) and we obtain

$$\begin{aligned} h''(\theta )&\ge \left[ D_{ij}u\left( x_{\theta }\right) -g_{ij}\left( x_{\theta },y,z\right) \right] \left( \dot{x_\theta }\right) _i\left( \dot{x_\theta }\right) _j + A_{ij,u}\left( u_1-u_0\right) \left( \dot{x_\theta }\right) _i\left( \dot{x_\theta }\right) _j\\&-K|h'(\theta )| + D_{p_kp_l}A_{ij}\left( x_{\theta },u_0,p_t\right) \left( \dot{x_\theta }\right) _i\left( \dot{x_\theta }\right) _j\left( p_1-p_0\right) _k\left( p_1-p_0\right) _l. \end{aligned}$$

This is the desired formula. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rankin, C. Strict convexity and \(C^1\) regularity of solutions to generated Jacobian equations in dimension two. Calc. Var. 60, 221 (2021). https://doi.org/10.1007/s00526-021-02093-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02093-4

Mathematics Subject Classification

Navigation