Skip to main content
Log in

Nonlocal semilinear elliptic problems with singular nonlinearity

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider a Lazer-Mckenna-type problem involving the fractional Laplacian and singular nonlinearity. We investigate existence, regularity and uniqueness of solutions in light of the interplay between the nonlinearities and the summability of the datum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdellaoui, B., Attar, A., Bentifour, R.: On the fractional \(p\)-Laplacian equations with weight and general datum. Adv. Nonlinear Anal. 8(1), 144–174 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Abdellaoui, K. Biroud, J. Davila, and F. Mahmoudi. Nonlinear elliptic problem related to the Hardy inequality with singular term at the boundary. Commun. Contemp. Math., 17(3):1450033, 28, 2015

  3. Abdellaoui, B., Biroud, K., Primo, A.: Nonlinear fractional elliptic problem with singular term at the boundary. Complex Var. Elliptic Equ. 64(6), 909–932 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abdellaoui, B., Boucherif, A., Touaoula, T.M.: Fractional parabolic problems with a nonlocal initial condition. Moroccan J. Pure Appl. Anal. 3(1), 116–132 (2017)

    Article  Google Scholar 

  5. Abdellaoui, B., Medina, M., Peral, I., Primo, A.: The effect of the Hardy potential in some Calderón-Zygmund properties for the fractional Laplacian. J. Differ. Equ. 260(11), 8160–8206 (2016)

    Article  MATH  Google Scholar 

  6. Abdellaoui, B., Medina, M., Peral, I., Primo, A.: Optimal results for the fractional heat equation involving the Hardy potential. Nonlinear Anal. 140, 166–207 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Adimurthi, A., Giacomoni, J., Santra, S.: Positive solutions to a fractional equation with singular nonlinearity. J. Differ. Equ. 265(4), 1191–1226 (2018)

    Article  MathSciNet  Google Scholar 

  8. Aikawa, H., Kilpeläinen, T., Shanmugalingam, N., Zhong, X.: Boundary Harnack principle for \(p\)-harmonic functions in smooth Euclidean domains. Potential Anal. 26(3), 281–301 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Arcoya, D., Moreno-Mérida, L.: Multiplicity of solutions for a Dirichlet problem with a strongly singular nonlinearity. Nonlinear Anal. 95, 281–291 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Aris. The mathematical theory of diffusion and reaction in permeable catalysts, volume I and II. Oxford University Press, New York, (1975)

  11. Barrios, B., De Bonis, I., Medina, M., Peral, I.: Semilinear problems for the fractional laplacian with a singular nonlinearity. Open Math. 13, 390–407 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Barrios, M. Medina, and I. Peral. Some remarks on the solvability of non-local elliptic problems with the Hardy potential. Commun. Contemp. Math., 16(4):1350046, 29, 2014

  13. Bisci, G.M., Radulescu, V.D., Servadei, R.: Variational methods for nonlocal fractional problems. Cambridge University Press, Cambridge, Encyclopedia of Mathematics and its Applications (2016)

    Book  MATH  Google Scholar 

  14. Boccardo, L., Casado-Díaz, J.: Some properties of solutions of some semilinear elliptic singular problems and applications to the \(G\)-convergence. Asymptot. Anal. 86(1), 1–15 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Boccardo, L., Orsina, L.: Semilinear elliptic equations with singular nonlinearities. Calc. Var. Partial Differ. Equ. 37(3–4), 363–380 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brandolini, B., Chiacchio, F., Trombetti, C.: Symmetrization for singular semilinear elliptic equations. Ann. Mat. Pura Appl. 193(2), 389–404 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Canino, A., Degiovanni, M.: A variational approach to a class of singular semilinear elliptic equations. J. Convex Anal. 11(1), 147–162 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Canino, A., Montoro, L., Sciunzi, B., Squassina, M.: Nonlocal problems with singular nonlinearity. Bull. Sci. Math. 141(3), 223–250 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Canino, B. Sciunzi, and A. Trombetta. Existence and uniqueness for \(p\)-Laplace equations involving singular nonlinearities. NoDEA Nonlinear Differential Equations Appl., 23(2):Art. 8, 18, 2016

  20. Chen, H., Véron, L.: Semilinear fractional elliptic equations involving measures. J. Differ. Equ. 257(5), 1457–1486 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Coclite, G.M., Coclite, M.M.: On the summability of weak solutions for a singular Dirichlet problem in bounded domains. Adv. Differ. Equ. 19(5–6), 585–612 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Crandall, M.G., Rabinowitz, P.H., Tartar, L.: On a Dirichlet problem with a singular nonlinearity. Comm. Partial Differ. Equ. 2(2), 193–222 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Danielli and S. Salsa. Obstacle problems involving the fractional Laplacian. In Recent developments in nonlocal theory, pages 81–164. De Gruyter, Berlin, 2018

  24. De Cave, L.M.: Nonlinear elliptic equations with singular nonlinearities. Asymptot. Anal. 84(3–4), 181–195 (2013)

    MathSciNet  MATH  Google Scholar 

  25. F. Demengel and G. Demengel. Functional spaces for the theory of elliptic partial differential equations. Universitext. Springer, London; EDP Sciences, Les Ulis, 2012

  26. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dipierro, S., Figalli, A., Valdinoci, E.: Strongly nonlocal dislocation dynamics in crystals. Comm. Partial Differ. Equ. 39(12), 2351–2387 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. H.V. Emden and A.W. Shaker. Multigrid methods for a semilinear pde in the theory of pseudoplastic fluids. Calhoun, pages 231–242, (1993)

  29. Fiscella, A., Servadei, R., Valdinoci, E.: Density properties for fractional Sobolev spaces. Ann. Acad. Sci. Fenn. Math. 40(1), 235–253 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fulks, W., Maybee, J.S.: A singular non-linear equation. Osaka Math. J. 12, 1–19 (1960)

    MathSciNet  MATH  Google Scholar 

  31. Grisvard, P.: Elliptic problems in nonsmooth domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  32. Gui, C., Lin, F.H.: Regularity of an elliptic problem with a singular nonlinearity. Proc. Roy. Soc. Edinburgh Sect. A 123(6), 1021–1029 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Karlsen, K.H., Petitta, F., Ulusoy, S.: A duality approach to the fractional Laplacian with measure data. Publ. Mat. 55(1), 151–161 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Kufner, O. John, S. Fučík. Function spaces. Noordhoff International Publishing, Leyden; Academia, Prague: Monographs and Textbooks on Mechanics of Solids and Fluids. Analysis, Mechanics (1977)

  35. Lair, A.V., Shaker, A.W.: Classical and weak solutions of a singular semilinear elliptic problem. J. Math. Anal. Appl. 211(2), 371–385 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lazer, A.C., McKenna, P.J.: On a singular nonlinear elliptic boundary-value problem. Proc. Amer. Math. Soc. 111(3), 721–730 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Leggat, A.R., Miri, S.E.: Anisotropic problem with singular nonlinearity. Complex Var. Elliptic Equ. 61(4), 496–509 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Leonori, T., Peral, I., Primo, A., Soria, F.: Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations. Discrete Contin. Dyn. Syst. 35(12), 6031–6068 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nachman, A., Callegari, A.: A nonlinear singular boundary value problem in the theory of pseudoplastic fluids. SIAM J. Appl. Math. 38(2), 275–281 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  40. Oliva, F.: Regularizing effect of absorption terms in singular problems. J. Math. Anal. Appl. 472(1), 1136–1166 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Oliva, F., Petitta, F.: On singular elliptic equations with measure sources. ESAIM Control Optim. Calc. Var. 22(1), 289–308 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Oliva, F., Petitta, F.: Finite and infinite energy solutions of singular elliptic problems: existence and uniqueness. J. Differ. Equ. 264(1), 311–340 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Orsina, L., Petitta, F.: A Lazer-McKenna type problem with measures. Differ. Integral Equ. 29(1–2), 19–36 (2016)

    MathSciNet  MATH  Google Scholar 

  44. Petitta, F.: Some remarks on the duality method for integro-differential equations with measure data. Adv. Nonlinear Stud. 16(1), 115–124 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. A.C. Ponce. Elliptic PDEs, measures and capacities, volume 23 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich, 2016

  46. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101(3), 275–302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389(2), 887–898 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60(1), 67–112 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sire, Y., Valdinoci, E.: Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result. J. Funct. Anal. 256(6), 1842–1864 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yao, M., Zhao, J.: Positive solution of a singular non-linear elliptic boundary value problem. Appl. Math. Comput. 148(3), 773–782 (2004)

    MathSciNet  MATH  Google Scholar 

  51. Yijing, S., Duanzhi, Z.: The role of the power 3 for elliptic equations with negative exponents. Calc. Var. Partial Differ. Equ. 49(3–4), 909–922 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Youssfi, A., Ould Mohamed Mahmoud, G.: On singular equations involving fractional Laplacian. Acta Math. Sci. 40B(5), 1289–1315 (2020)

Download references

Acknowledgements

The authors are thankful to the anonymous referees for their critical reviews and constructive suggestions that improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Youssfi.

Additional information

Communicated by Michael Struwe.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We start by proving the following lemma which we have used in the proof of Lemma 4.4.

Lemma 5.3

Let \(F(x)=x^r\), \(0<r<1\), for every \(x>0\). Then for every function \(v :\mathbb {R}^N\rightarrow ]0,+\infty [\) that satisfies

$$\begin{aligned} \int _{\mathbb {R}^{N}}\int _{\mathbb {R}^{N}}\frac{|v(x)-v(y)|^{2}}{|x-y|^{N+2s}}dydx<\infty , \end{aligned}$$

we have

$$\begin{aligned} \displaystyle \begin{array}{lll} (-\Delta )^{s}(F\circ v)(x)\le \\[2mm] \displaystyle F^{\prime }(v(x))(-\Delta )^{s}v(x)-\frac{F^{\prime \prime }(v(x))}{r}a(N,s)\int _{\mathbb {R}^{N}}\frac{\big (v(x)-v(y)\big )^{2}}{|x-y|^{N+2s}}dy. \end{array} \end{aligned}$$
(5.1)

Proof

Following [20, Lemma 2.3.], we can use Taylor’s formula obtaining for every \((x,y)\in \mathbb {R}^{N}\times \mathbb {R}^{N}\)

$$\begin{aligned} F(v(y))-F(v(x))=F^{\prime }(v(x))(v(y)-v(x))+R(F), \end{aligned}$$
(5.2)

where

$$\begin{aligned} \begin{array}{lll}\displaystyle R(F)&{}=\displaystyle \int _{v(x)}^{v(y)}(v(y)-t)F^{\prime \prime }(t)dt\\ &{}=\displaystyle (v(y)-v(x))^{2}\int _{0}^{1}(1-s)F^{\prime \prime }(v(x)+s(v(y)-v(x)))ds. \end{array} \end{aligned}$$

On other hand, since the function \(F^{\prime \prime }\) is increasing we have

$$\begin{aligned} \begin{array}{lll}\displaystyle (1-s)v(x)&{}\le v(x)+s(v(y)-v(x)) \\[2mm] &{}\Rightarrow F^{\prime \prime }((1-s)v(x))\le F^{\prime \prime }(v(x)+s(v(y)-v(x))). \end{array} \end{aligned}$$

Hence, it follows

$$\begin{aligned} \begin{array}{lll} -R(F)&{}\le -(v(y)-v(x))^{2}\int _{0}^{1}(1-s)F^{\prime \prime }((1-s)v(x))ds\\[4mm] &{}=-(v(y)-v(x))^{2}F^{\prime \prime }(v(x))\int _{0}^{1}(1-s)^{r-1}ds. \end{array} \end{aligned}$$

Then, from (5.2) we obtain

$$\begin{aligned} F(v(x))-F(v(y))\le F^{\prime }(v(x))(v(x)-v(y))-\frac{F^{\prime \prime }(v(x))}{r}(v(y)-v(x))^{2}. \end{aligned}$$

Dividing both sides of this inequality by \(|x-y|^{N+2s}\) and then integrating with respect to the variable y we arrive at

$$\begin{aligned} \begin{array}{lll} a(N,s)P.V.\int _{\mathbb {R}^{N}} \frac{F(v(x))-F(v(y))}{|x-y|^{N+2s}}dy &{}\le F^{\prime }(v(x))a(N,s)P.V.\int _{\mathbb {R}^{N}} \frac{(v(x)-v(y))}{|x-y|^{N+2s}}dy\\[4mm] &{}-\frac{F^{\prime \prime }(v(x))}{r}a(N,s)P.V.\int _{\mathbb {R}^{N}} \frac{(v(y)-v(x))^{2}}{|x-y|^{N+2s}}dy, \end{array} \end{aligned}$$

which proves (5.1). \(\square \)

In the following result we extend the space of admissible test functions in (2.4).

Lemma 5.4

Let \(u\in X_{0}^{s}(\Omega )\) be a solution of the problem (1.1) taken in the sense of Definition 2.1 with \(f\in L^1(\Omega )\). Then for every \(\phi \in X_{0}^{s}(\Omega )\) we get \(\frac{f\phi }{u^\gamma }\in L^1(\Omega )\) and

$$\begin{aligned} \frac{a(N,s)}{2}\int _{{Q}}\frac{(u(x)-u(y))(\phi (x)-\phi (y))}{|x-y|^{N+2s}}dydx=\int _{\Omega }\frac{f\phi }{u^{\gamma }}dx. \end{aligned}$$
(5.3)

Proof

Take an arbitrary \(\phi \in X_{0}^{s}(\Omega )\). By [29, Theorem 6] there exists a sequence \(\{\varphi _n\}_n\subset \mathcal {C}_{0}^{\infty }(\Omega )\) such that \(\varphi _n\rightarrow \phi \) in norm in \(H^{s}(\mathbb {R}^N)\). Writing (2.4) with \(\varphi _n\in \mathcal {C}_{0}^{\infty }(\Omega )\) we obtain

$$\begin{aligned} \frac{a(N,s)}{2}\int _{Q}\frac{(u(x)-u(y))(\varphi _{n}(x)-\varphi _{n}(y))}{|x-y|^{N+2s}}dydx=\int _{\Omega }\frac{f\varphi _n}{u^{\gamma }}dx, \end{aligned}$$
(5.4)

in which we shall pass to the limit as n tends to \(+\infty \). Starting with the left-hand side of (5.4), we consider the following two functions

$$\begin{aligned} F_n(x,y)=\frac{(\varphi _{n}(x)-\varphi _{n}(y))}{|x-y|^{\frac{N+2s}{2}}} \text{ and } F(x,y)=\frac{(\phi (x)-\phi (y))}{|x-y|^{\frac{N+2s}{2}}}. \end{aligned}$$

Notice that the convergence \(\varphi _n\rightarrow \phi \) in norm in \(H^{s}(\mathbb {R}^N)\) implies that the sequence \(\{F_n(x,y)\}_n\) converges to F(xy) in \(L^{2}(\mathbb {R}^{2N})\) and, up to a subsequence if necessary, we can assume that \(\{F_n(x,y)\}_n\) converges almost everywhere in \(\mathbb {R}^{2N}\).

As \(u\in X_{0}^{s}(\Omega )\) we have \(\frac{(u(x)-u(y))}{|x-y|^{\frac{N+2s}{2}}}\in L^{2}(\mathbb {R}^{2N})\) implying

$$\begin{aligned} \begin{array}{lll}\displaystyle \lim _{n\rightarrow \infty }\int _{Q}\frac{(u(x)-u(y))(\varphi _{n}(x)-\varphi _{n}(y))}{|x-y|^{N+2s}}dydx\\[2mm] = \displaystyle \int _{Q}\frac{(u(x)-u(y))(\phi (x)-\phi (y))}{|x-y|^{N+2s}}dydx. \end{array} \end{aligned}$$

For the term in the right-hand side of (5.4), we first note that thanks to [38, Proposition 3.] the two functions \((\varphi _n-\varphi _k)^+\) and \((\varphi _n-\varphi _k)^-\) are both admissible test functions in (2.4). Taking them so we obtain

$$\begin{aligned} \begin{array}{lll}\displaystyle \int _{\Omega }\frac{f}{u^{\gamma }}(\varphi _n-\varphi _k)^+(x)dx\\ =\displaystyle \frac{a(N,s)}{2}\int _{{Q}}\frac{(u(x)-u(y))\big ((\varphi _n-\varphi _k)^+(x)-(\varphi _n-\varphi _k)^+(y)\big )}{|x-y|^{N+2s}}dydx \end{array} \end{aligned}$$

and

$$\begin{aligned} \begin{array}{lll}\displaystyle \int _{\Omega }\frac{f}{u^{\gamma }}(\varphi _n-\varphi _k)^-(x)dx\\ =\displaystyle \frac{a(N,s)}{2}\int _{{Q}}\frac{(u(x)-u(y))\big ((\varphi _n-\varphi _k)^-(x)-(\varphi _n-\varphi _k)^-(y)\big )}{|x-y|^{N+2s}}dydx. \end{array} \end{aligned}$$

Then, summing up both the two equalities we have

$$\begin{aligned} \begin{array}{lll}\displaystyle \int _{\Omega }\frac{f}{u^{\gamma }}\Big |\varphi _n-\varphi _k\Big |dx\\ =\displaystyle \frac{a(N,s)}{2}\int _{{Q}}\frac{(u(x)-u(y))\Big (|\varphi _n(x)-\varphi _k(x)|-|\varphi _n(y)-\varphi _k(y)|\Big )}{|x-y|^{N+2s}}dydx\\[3mm] \le \displaystyle \frac{a(N,s)}{2}\int _{{Q}}\frac{|u(x)-u(y)|\Big |(\varphi _n(x)-\varphi _k(x))-(\varphi _n(y)-\varphi _k(y))\Big |}{|x-y|^{N+2s}}dydx \end{array} \end{aligned}$$

and then the Hölder inequality implies

$$\begin{aligned} \int _{\Omega }\Big |\frac{f\varphi _n}{u^{\gamma }}-\frac{f\varphi _k}{u^{\gamma }}\Big |dx\le \frac{a(N,s)}{2}\Vert u\Vert _{X_{0}^{s}(\Omega )}\Vert \varphi _n-\varphi _k\Vert _{X_{0}^{s}(\Omega )}. \end{aligned}$$

Thus, we deduce that \(\Big \{\frac{f\varphi _n}{u^{\gamma }}\Big \}_n\) is a Cauchy sequence in \(L^1(\Omega )\). Since \(\varphi _n\) converges to \(\varphi \) a.e. in \(\Omega \), the sequence \(\Big \{\frac{f\varphi _n}{u^{\gamma }}\Big \}_n\) converges to \(\frac{f\phi }{u^{\gamma }}\in L^1(\Omega )\) in norm in \(L^1(\Omega )\). So that the passage to the limit as n tends to infinity in (5.4) yields

$$\begin{aligned} \frac{a(N,s)}{2}\int _{{Q}}\frac{(u(x)-u(y))(\phi (x)-\phi (y))}{|x-y|^{N+2s}}dydx=\int _{\Omega }\frac{f\phi }{u^{\gamma }}dx, \end{aligned}$$

for every \(\phi \in X_{0}^{s}(\Omega )\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youssfi, A., Mahmoud, G.O.M. Nonlocal semilinear elliptic problems with singular nonlinearity. Calc. Var. 60, 153 (2021). https://doi.org/10.1007/s00526-021-02034-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02034-1

Mathematics Subject Classification

Navigation