Skip to main content
Log in

Going to Lorentz when fractional Sobolev, Gagliardo and Nirenberg estimates fail

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In the cases where there is no Sobolev-type or Gagliardo–Nirenberg-type fractional estimate involving \({|u |}_{W^{s,p}}\), we establish alternative estimates where the strong \(L^p\) norms are replaced by Lorentz norms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourgain, J., Brezis, H., Mironescu, P.: Lifting in Sobolev spaces. J. Anal. Math. 80(37–86), 0021–7670 (2000). https://doi.org/10.1007/BF02791533

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces, in Optimal Control and Partial Differential Equations, IOS, Amsterdam, pp. 439–455 (2001)

  3. Brezis, H.: How to recognize constant functions. A connection with Sobolev spaces. Uspekhi Mat. Nauk. 57(4), 59–74 (2002); Russian Math. Surv. 57(4), 693–708 (2002). https://doi.org/10.1070/RM2002v057n04ABEH000533

  4. Brezis, H.: Functional analysis, Sobolev spaces and partial differential equations. Universitext, Springer, New York (2011)

  5. Brezis, H., Mironescu, P.: Gagliardo–Nirenberg inequalities and non-inequalities: the full story. Ann. Inst. H. Poincaré Anal. Non Linéaire 35(5), 1355–1376 (2018). https://doi.org/10.1016/j.anihpc.2017.11.007

  6. Brezis, H., Van Schaftingen, J., Yung, P.-L.: A surprising formula for Sobolev norms. Proc. Natl. Acad. Sci. USA 118(8), e2025254118 (2021). https://doi.org/10.1073/pnas.2025254118

  7. Brezis, H., Van Schaftingen, J., Yung, P.-L.: A surprising formula for Sobolev norms and related topics. arXiv:2003.05216v4

  8. Castillo, R.E., Rafeiro, H.: An introductory course in Lebesgue spaces, CMS Books in Mathematics. Springer, Cham (2016)

  9. Cohen, A., Dahmen, W., Daubechies, I., DeVore, R.: Harmonic analysis of the space BV. Rev. Mat. Iberoam. 19(1), 235–263 (2003). https://doi.org/10.4171/RMI/345

  10. De Marco, G., Mariconda, C., Solimini, S.: An elementary proof of a characterization of constant functions. Adv. Nonlinear Stud. 8(3), 597–602 (2008). https://doi.org/10.1515/ans-2008-0306

  11. fedja (https://math.stackexchange.com/users/12992/fedja). If \(\int _{\mathbb{R}^2} \frac{\vert f(x)-f(y)\vert }{\vert x-y\vert ^2} dxdy < \infty \) then \(f\) is a.e. constant. https://math.stackexchange.com/questions/488780 (version: 2013-10-30)

  12. Figalli, A., Jerison, D.: How to recognize convexity of a set from its marginals. J. Funct. Anal. 266(3), 1685–1701 (2014). https://doi.org/10.1016/j.jfa.2013.05.040

  13. Figalli, A., Serra, J.: On stable solutions for boundary reactions: a De Giorgi-type result in dimension \(4+1\). Invent. Math. 219(1), 153–177 (2020). https://doi.org/10.1007/s00222-019-00904-2

  14. Gui, C., Li, Q.: Some energy estimates for stable solutions to fractional Allen–Cahn equations. Calc. Var. Partial Differ. Equ. (2020). https://doi.org/10.1007/s00526-020-1701-2

  15. Grafakos, L.: Classical Fourier analysis, 3rd edn. Graduate Texts in Mathematics, vol. 249. Springer, New York (2014)

  16. Greco, L., Schiattarella, R.: An embedding theorem for BV-functions. Commun. Contemp. Math. (1997) https://doi.org/10.1142/S0219199719500329

  17. Hunt, R.A.: On \(L(p, q)\) spaces. Enseign. Math. (2) 12, 249–276 (1966)

  18. O’Neil, R.: Convolution operators and \(L(p,\, q)\) spaces. Duke Math. J. 30(129–142), 0012–7094 (1963)

  19. Poliakovsky, A.: Some remarks on a formula for Sobolev norms due to Brezis, Van Schaftingen and Yung. arXiv:2102.00557

  20. Ranjbar-Motlagh, A.: A remark on the Bourgain–Brezis–Mironescu characterization of constant functions. Houston J. Math. 46(1), 113–115 (2020)

  21. Van Schaftingen, J.: Estimates by gap potentials of free homotopy decompositions of critical Sobolev maps. Adv. Nonlinear Anal. 9(1), 1214–1250 (2020). https://doi.org/10.1515/anona-2020-0047

  22. Ziemer, W.P.: Weakly differentiable functions: Sobolev spaces and functions of bounded variation. Graduate Texts in Mathematics, vol. 120. Springer, New York (1989)

Download references

Acknowledgements

This work was carried out during two visits of J. Van Schaftingen to Rutgers University. He thanks H. Brezis for the invitation and the Department of Mathematics for its hospitality. P-L. Yung was partially supported by a Future Fellowship FT200100399 from the Australian Research Council. H. Brezis is grateful to C. Sbordone who communicated to him the interesting paper [16] by Greco and Schiattarella which triggered our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Van Schaftingen.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brezis, H., Van Schaftingen, J. & Yung, PL. Going to Lorentz when fractional Sobolev, Gagliardo and Nirenberg estimates fail. Calc. Var. 60, 129 (2021). https://doi.org/10.1007/s00526-021-02001-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02001-w

Mathematics Subject Classification

Navigation