Skip to main content
Log in

A reducing mechanism on wave speed for chemotaxis systems with degenerate diffusion

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper is concerned with traveling wave solutions for a chemotaxis model with degenerate diffusion of porous medium type. We establish the existence of semi-finite traveling waves, including the sharp type and \(C^1\) type semi-finite waves. Our results indicate that chemotaxis slows down the wave speed of semi-finite traveling wave, that is, the traveling wave speed for chemotaxis with porous medium (degenerate) diffusion is smaller than that for the porous medium equation without chemotaxis. As we know, this is a new result not shown in the existing literature. The result appears to be a little surprising since chemotaxis is a convective force. We prove our results by the Schauder’s fixed point theorem and estimate the wave speed by a variational approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson, D.G.: Density-dependent interaction-diffusion systems. In: Proceedings of the Advances Seminar on Dynamics and Modeling of Reactive System, Academic Press, New York (1980)

  2. Audrito, A., Vázquez, J.L.: The Fisher-KPP problem with doubly nonlinear diffusion. J. Differ. Equ. 263, 7647–7708 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben-Jacob, E., Schochet, O., Tenenbaum, A., Cohen, I., Czirók, A., Vicsek, T.: Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368(6466), 46–49 (1994)

    Article  Google Scholar 

  4. Benguria, R.D., Depassier, M.C.: Variational characterization of the speed of propagation of fronts for the nonlinear diffusion equation. Commun. Math. Phys. 175, 221–227 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blanchet, A., Laurenot, P.: The parabolic-parabolic Keller-Segel system with critical diffusion as a gradient flow in \({\mathbb{R}}^3\). Commun. Partial Differ. Equ. 38(4), 658–686 (2013)

    Article  Google Scholar 

  6. Carrillo, J.A., Chen, X.F., Wang, Q., Wang, Z.A., Zhang, L.: Phase transitions and bump solutions of the Keller-Segel model with volume exclusion. SIAM J. Appl. Math. 80, 232–261 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carrillo, J.A., Hittmeir, S., Volzone, B., Yao, Y.: Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics. Invent. Math. 218, 889–977 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chae, M., Choi, K.: Nonlinear stability of planar traveling waves in a chemotaxis model of tumor angiogenesis with chemical diffusion. J. Differ. Equ. 268, 3449–3496 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chae, M., Choi, K., Kang, K., Lee, J.: Stability of planar traveling waves in a Keller-Segel equation on an infinite strip domain. J. Differ. Equ. 265, 237–279 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Daskalopoulos, P., del Pino, M.: On nonlinear parabolic equations of very fast diffusion. Arch. Rational Mech. Anal. 137, 363–380 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Davis, P.N., van Heijster, P., Marangell, R.: Absolute instabilities of travelling wave solutions in a Keller-Segel model. Nonlinearity 30(11), 4029–4061 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. del Pino, M., Dolbeault, J.: Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 81, 847–875 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. del Pino, M., Pistoia, A., Vaira, G.: Large mass boundary condensation patterns in the stationary Keller-Segel system. J. Differ. Equ. 261, 3414–3462 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. del Pino, M., Sáez, M.: On the extinction profile for solutions of \(u_t=\Delta u^{\frac{N-2}{N+2}}\). Indiana Univ. Math. J. 50, 611–628 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. del Pino, M., Wei, J.C.: Collapsing steady states of the Keller-Segel system. Nonlinearity 19, 661–684 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gilding, B.H., Kersner, R.: A Fisher/KPP-type equation with density-dependent diffusion and convection: travelling-wave solutions. J. Phys. A 38(15), 3367–3379 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hamel, F., Henderson, C.: Propagation in a Fisher-KPP equation with non-local advection. J. Funct. Anal. 278, 108426 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

  19. Horstmann, D.: From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch. Math.-Verien, 105:103–106 (2003)

  20. Hou, Q., Liu, C.J., Wang, Y.G., Wang, Z.A.: Stability of boundary layers for a viscous hyperbolic system arising from chemotaxis: one dimensional case. SIAM J. Math. Anal. 50, 3058–3091 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, R., Jin, C.H., Mei, M., Yin, J.X.: Existence and stability of traveling waves for degenerate reaction-diffusion equation with time delay. J. Nonlinear Sci. 28, 1011–1042 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ishida, S., Yokota, T.: Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. J. Differ. Equ. 252, 1421–1440 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 26, 399–415 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  24. Keller, E.F., Segel, L.A.: Model for chemotaxis. J. Theoret. Biol. 30, 225–234 (1971)

    Article  MATH  Google Scholar 

  25. Keller, E.F., Segel, L.A.: Traveling bands of chemotactic bacteria: A theoretical analysis. J. Theor. Biol. 30, 377–380 (1971)

    Article  MATH  Google Scholar 

  26. Kim, I., Yao, Y.: The Patlak–Keller–Segel model and its variations: properties of solutions via maximum principle. SIAM J. Math. Anal. 44(2), 568–602 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kowalczyk, R.: Preventing blow-up in a chemotaxis model. J. Math. Anal. Appl. 305, 566–588 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, J., Li, T., Wang, Z.A.: Stability of traveling waves of the Keller-Segel system with logarithmic sensitivity. Math. Models Methods Appl. Sci. 24(14), 2819–2849 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, T., Wang, Z.A.: Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis. SIAM J. Appl. Math. 70(5), 1522–1541 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, T., Wang, Z.A.: Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis. J. Differ. Equ. 250, 1310–1333 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, H., Zhao, K.: Initial-boundary value problems for a system of hyperbolic balance laws arising from chemotaxis. J. Differ. Equ. 258(2), 302–338 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lui, R., Wang, Z.A.: Traveling wave solutions from microscopic to macroscopic chemotaxis models. J. Math. Biol. 61(5), 739–761 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Martinez, V., Wang, Z.A., Zhao, K.: Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology. Indiana Univ. Math. J. 67, 1383–1424 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Matthysen, E.: Density-dependent dispersal in birds and mammals. Ecography 28, 403–416 (2005)

    Article  Google Scholar 

  35. Murray, J.D.: Mathematical Biology I: An Introduction (2002)

  36. Newgreen, D.F., Pettet, G.J., Landman, K.A.: Chemotactic cellular migration: smooth and discontinuous travelling wave solutions. SIAM J. Appl. Math. 63(5), 1666–1681 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Salako, R.B., Shen, W.X.: Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on \({\mathbb{R}}^n\). Disc. Cont. Dyn. Syst. 37, 6189–6225 (2017)

    Article  MATH  Google Scholar 

  38. Salako, R.B., Shen, W.X.: Existence of traveling wave solutions of parabolic-parabolic chemotaxis systems. Nonlinear Anal. Real World Appl. 42, 93–119 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Salako, R.B., Shen, W.X.: Traveling wave solutions for fully parabolic Keller-Segel chemotaxis systems with a logistic source. Electron. J. Differ. Equ. 53, 1–18 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Satnoianu, R.A., Maini, P.K., Sánchez-Garduno, F., Armitage, J.P.: Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation. Discrete Contin. Dyn. Syst. Ser. B 1(3), 339–362 (2001)

    MathSciNet  MATH  Google Scholar 

  41. Sengers, B.G., Please, C.P., Oreffo, R.O.C.: Experimental characterization and computational modelling of two-dimensional cell spreading for skeletal regeneration. J. R. Soc. Interface 4(17), 1107–1117 (2007)

    Article  Google Scholar 

  42. Sherratt, J.A., Murray, J.D.: Models of epidermal wound healing. Proc. R. Soc. Lond. B 241(1300), 29–36 (1990)

    Article  Google Scholar 

  43. Sugiyama, Y.: Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic system of chemotaxis. Differ. Integral Equ. 20, 133–180 (2007)

    MathSciNet  MATH  Google Scholar 

  44. Tello, J.I., Winkler, M.: A chemotaxis system with logistic source. Commun. Partial Differ. Equ. 32, 849–877 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Vázquez, J.L.: The Porous Medium Equation: Mathematical Theory. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  46. Vázquez, J.L.: Smoothing and Decay Estimates for Nonlinear Diffusion Equations: Equations of Porous Medium Type. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  47. Wang, Z.A.: Mathematics of traveling waves in chemotaxis. Disc. Cont. Dyn. Syst.-Series B 18(3), 601–641 (2013)

    MathSciNet  MATH  Google Scholar 

  48. Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35(8), 1516–1537 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. Math. Pure. Appl. 100(5), 748–767 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Xiang, T.: Boundedness and global existence in the higher-dimensional parabolic-parabolic chemotaxis system with/without growth source. J. Differ. Equ. 258, 4275–323 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Xu, T.Y., Ji, S.M., Jin, C.H., Mei, M., Yin, J.X.: Early and late stage profiles for a chemotaxis model with density-dependent jump probability. Math. Biosci. Eng. 15, 1345–1385 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  52. Xu, T.Y., Ji, S.M., Mei, M., Yin, J.X.: Traveling waves for time-delayed reaction diffusion equations with degenerate diffusion. J. Differ. Equ. 265, 4442–4485 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  53. Xu, T.Y., Ji, S.M., Mei, M., Yin, J.X.: Global existence of solutions to a chemotaxis-haptotaxis model with density-dependent jump probability and quorum-sensing mechanisms. Math. Methods Appl. Sci. 41, 4208–4226 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  54. Xu, T.Y., Ji, S.M., Mei, M., Yin, J.X.: Variational approach of critical sharp front speeds in degenerate diffusion model with time delay. Nonlinearity 33, 4013–4029 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  55. Xu, T.Y., Ji, S.M., Mei, M., Yin, J.X.: On a chemotaxis model with degenerate diffusion: initial shrinking, eventual smoothness and expanding. J. Differ. Equ. 268, 414–446 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of S. Ji is supported by Guangdong Basic and Applied Basic Research Foundation Grant No. 2021A1515010367. The research of Z.A. Wang is supported by Hong Kong RGC GRF grant PolyU 153055/18P (Project ID P0005472). The research of T. Xu is supported by China Postdoctoral Science Foundation No. 2021M691070. The research of J. Yin was supported by NSFC Grant Nos. 11771156 & 12026220, Guangdong Basic and Applied Basic Research Foundation Grant No. 2020B1515310013, Science and Technology Program of Guangzhou No. 2019050001, and NSF of Guangzhou Grant No. 201804010391.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianyuan Xu.

Additional information

Communicated by M. Del Pino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, S., Wang, ZA., Xu, T. et al. A reducing mechanism on wave speed for chemotaxis systems with degenerate diffusion. Calc. Var. 60, 178 (2021). https://doi.org/10.1007/s00526-021-01990-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-01990-y

Mathematics Subject Classification

Navigation