Skip to main content
Log in

Existence and concentration of positive solutions for a logarithmic Schrödinger equation via penalization method

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this article we are concerned with the following logarithmic Schrödinger equation

$$\begin{aligned} \left\{ \begin{array}{lc} -{\epsilon }^2\Delta u+ V(x)u=u \log u^2, &{}\quad \text{ in } \,\, {\mathbb {R}}^{N}, \\ u \in H^1({\mathbb {R}}^{N}), &{} \; \\ \end{array} \right. \end{aligned}$$

where \(\epsilon >0, N \ge 1\) and \(V:{\mathbb {R}}^{N}\rightarrow {\mathbb {R}}\) is a continuous potential. Under a local assumption on the potential V, we use the variational methods to prove the existence and concentration of positive solutions for the above problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O., de Morais Filho, D.C.: Existence of concentration of positive solutions for a Schrödinger logarithmic equation. Z. Angew. Math. Phys. 69, 144 (2018)

    Article  Google Scholar 

  2. Alves, C.O., de Morais Filho, D.C., Figueiredo, G.M.: On concentration of solution to a Schrödinger logarithmic equation with deepening potential well. Math. Methods Appl. Sci. 42, 4862–4875 (2019)

    Article  MathSciNet  Google Scholar 

  3. Alves, C.O., Ji, C.: Multiple positive solutions for a Schrödinger logarithmic equation. arXiv:1901.10329v2 [math.AP]

  4. Alves, C.O., Ji, C.: Existence of a positive solution for a logarithmic Schrödinger equation with saddle-like potential. arXiv:1904.09772v1 [math.AP]

  5. Alves, C.O., Ji, C.: Multi-bump positive solutions for a logarithmic Schrödinger equation with deepening potential well. arXiv:1908.09153 [math.AP]

  6. Ambrosetti, A., Badiale, M., Cingolani, S.: Semiclasical states of nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 140, 285–300 (1997)

    Article  Google Scholar 

  7. Ardila, A., Squassina, M.: Gausson dynamics for logarithmic Schrödinger equations. Asymptot. Anal. 107, 203–226 (2018)

    Article  MathSciNet  Google Scholar 

  8. Cingolani, S., Lazzo, M.: Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations. Topol. Methods Nonlinear Anal. 10, 1–13 (1997)

    Article  MathSciNet  Google Scholar 

  9. del Pino, M., Dolbeault, J.: The optimal Euclidean \(L^p\)-Sobolev logarithmic inequality. J. Funct. Anal. 197, 151–161 (2003)

    Article  MathSciNet  Google Scholar 

  10. d’Avenia, P., Montefusco, E., Squassina, M.: On the logarithmic Schrödinger equation. Commun. Contemp. Math. 16, 1350032 (2014)

    Article  MathSciNet  Google Scholar 

  11. d’Avenia, P., Squassina, M., Zenari, M.: Fractional logarithmic Schrödinger equations. Math. Methods Appl. Sci. 38, 5207–5216 (2015)

    Article  MathSciNet  Google Scholar 

  12. del Pino, M., Felmer, P.L.: Local mountain pass for semilinear elliptic problems in unbounded domains. Cal. Var. Partial Differ. Equ. 4, 121–137 (1996)

    Article  Google Scholar 

  13. Degiovanni, M., Zani, S.: Multiple solutions of semilinear elliptic equations with one-sided growth conditions, nonlinear operator theory. Math. Comput. Model. 32, 1377–1393 (2000)

    Article  Google Scholar 

  14. Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equations with bounded potential. J. Funct. Anal. 69, 397–408 (1986)

    Article  MathSciNet  Google Scholar 

  15. Gui, C.: Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method. Commun. Partial Differ. Equ. 21(5–6), 787–820 (1996)

    Article  Google Scholar 

  16. Ji, C., Szulkin, A.: A logarithmic Schrödinger equation with asymptotic conditions on the potential. J. Math. Anal. Appl. 437, 241–254 (2016)

    Article  MathSciNet  Google Scholar 

  17. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The Locally compact case, part 2. Anal. Inst. H. Poincaré Sect. C 1, 223–253 (1984)

    Article  MathSciNet  Google Scholar 

  18. Oh, Y.J.: Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials on the class \((V)_{a}\). Commun. Partial Differ. Equ. 13, 1499–1519 (1988)

    Article  Google Scholar 

  19. Oh, Y.J.: On positive multi-bump bound states of nonlinear Schrödinger equations under multiple well potential with potentials. Commun. Math. Phys. 131(2), 223–253 (1990)

    Article  Google Scholar 

  20. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  Google Scholar 

  21. Squassina, M.: Existence, multiplicity, perturbation, and concentration results for a class of quasi-linear elliptic problems. Electron. J. Differ. Eqn., Monograph 7, San Marcos, Texas (2006)

  22. Squassina, M., Szulkin, A.: Multiple solution to logarithmic Schrödinger equations with periodic potential. Cal. Var. Partial Differ. Equ. 54, 585–597 (2015)

    Article  Google Scholar 

  23. Squassina, M., Szulkin, A.: Erratum to: Multiple solutions to logarithmic Schrödinger equations with periodic potential. Cal. Var. Partial Differ. Equ. (2017). https://doi.org/10.1007/s00526-017-1127-7

    Article  MATH  Google Scholar 

  24. Szulkin, A.: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 3, 77–109 (1986)

    Article  MathSciNet  Google Scholar 

  25. Tanaka, K., Zhang, C.: Multi-bump solutions for logarithmic Schrödinger equations. Cal. Var. Partial Differ. Equ. 56, 35 (2017)

    Article  Google Scholar 

  26. Vázquez, J.L.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12, 191–201 (1984)

    Article  MathSciNet  Google Scholar 

  27. Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 53, 229–244 (1993)

    Article  Google Scholar 

  28. Wang, Z.Q., Zhang, C.X.: Convergence from power-law to logarithmic-law in nonlinear scalar field equations. Arch. Ration. Mech. Anal. 231, 45–61 (2019)

    Article  MathSciNet  Google Scholar 

  29. Willem, M.: Minimax Theorems. Birkhauser, Basel (1996)

    Book  Google Scholar 

  30. Zhang, C.X., Zhang, X.: Bound ststes for logarithmic Schrödinger equations with potentials unbounded below. arXiv:1905.06687v1 [math.AP]

  31. Zloshchastiev, K.G.: Logarithmic nonlinearity in the theories of quantum gravity: origin of time and observational consequences. Grav. Cosmol. 16, 288–297 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Ji.

Additional information

Communicated by P. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Claudianor O. Alves was partially supported by CNPq/Brazil 304804/2017-7. Chao Ji was partially supported by Shanghai Natural Science Foundation (18ZR1409100).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, C.O., Ji, C. Existence and concentration of positive solutions for a logarithmic Schrödinger equation via penalization method. Calc. Var. 59, 21 (2020). https://doi.org/10.1007/s00526-019-1674-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1674-1

Mathematics Subject Classification

Navigation