Skip to main content
Log in

Concentrated solution for some non-local and non-variational singularly perturbed problems

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In the present paper, we prove the existence of concentrated solution for the following non-local and non-variational singularly perturbed problem,

$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} -\varepsilon ^2A(\varepsilon ^{-n}||u||^q_{L^q})\Delta u+ V(x)u=|u|^{p-1}u, &{}x\in \mathbb {R}^n,\\ 0<u\in H^1(\mathbb {R}^n), \lim \limits _{|x|\rightarrow \infty }u(x)=0, \end{array} \right. \end{aligned}$$
(0.1)

where \(n\ge 1\), \(1<p<2^*-1\), \(2\le q<2^*\), \(A: (0, +\infty )\rightarrow [a, +\infty )\), \(V(x): \mathbb {R}^n\rightarrow \mathbb {R}\) are two continuous functions, \(a>0\) and \(\varepsilon \) is a positive and small parameter. Problem (0.1) can be seen as a model to study the vibration of nonlinear string or bacteria’s density balance law in \(\mathbb {R}^n\). The existence is based on the well-known Lyapunov–Schmidt reduction method. In order to make Lyapunov–Schmidt reduction method work well, existence and so-called non-degeneracy result of positive solutions for following problem will be needed.

$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} -A(\Vert U\Vert ^q_{L^q})\Delta U(y)+ \alpha U(y)=U^{p}(y), &{}y\in \mathbb {R}^n,\\ 0<U\in H^1(\mathbb {R}^n). \end{array} \right. \end{aligned}$$
(0.2)

In Sect. 2, existence and non-degeneracy results for positive solutions of problem (0.2) are proved. Compared to the standard Schrödinger equation, our results imply that the non-local term \(A(\Vert U\Vert _{L^q}^q)\) has no effect on the non-degeneracy result of positive solutions of problem (0.2) when the solution U satisfies \(\Vert U\Vert ^q_{L^q}A'(\Vert U\Vert ^q_{L^q})\ne \frac{2}{n}A(\Vert U\Vert ^q_{L^q})\) and that the non-local term \(A(\Vert U\Vert _{L^q}^q)\) has significant effect on the existence result. Since the linearized operator L[U] for problem (0.2) is non-self-adjoint, our non-degeneracy result is a result about the Kernel space of the adjoint operator of linearized operator L[U] for problem (0.2) rather than the Kernel space of L[U] itself, which is essentially different from common non-local and self-adjoint equations, such as Kirchhoff equation, fractional Laplace equations and Choquard equations. Moreover, in our non-degeneracy result, we only assume that the solution U satisfies \(\Vert U\Vert _{L^q}^qA'(\Vert U\Vert _{L^q}^q)\ne \frac{2}{n}A(\Vert U\Vert _{L^q}^q)\). In our existence result of the concentrated solution, we only assume that \(A\in C^{1,1}_{loc}\). These two assumptions imply that A can be a non-monotonous or unbounded function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alves, C.O., Correa, F., Ma, F.T.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49(1), 85–93 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosetti, A., Malchiodi, A., Secchi, S.: Multiplicity results for some nonlinear Schrödinger equations with potentials. Arch. Ration. Mech. Anal. 159(3), 253–271 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosetti, A., Malchiodi, A.: Perturbation Methods and Semilinear Elliptic Problems on \(R^n\). Progress in Mathematics, vol. 240. Birkhäuser Verlag, Basel (2006)

    Book  MATH  Google Scholar 

  4. Amick, C.J., Toland, J.F.: Uniqueness and related analytic properties for the Benjamin–Ono equation-a nonlinear neumann problem in the plane. Acta Math. 167(1), 107–126 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arcoya, D., Leonori, T., Primo, A.: Existence of solutions for semilinear nonlocal elliptic problem via Bolzano Theorem. Acta Appl. Math. 127(1), 87–104 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arosio, A., Panizzi, S.: On the well-posedness of the Kirchhoff string. Trans. Am. Math. Soc. 348(1), 305–330 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Azorero, J.G., Malchiodi, A., Montoro, L., Peral, I.: Concentration of solutions for some singularly perturbed mixed problems: existence results. Arch. Ration. Mech. Anal. 196(3), 907–950 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bernstein, S.: Sur une classe d’équations fonctionnelles aux dérivées partielles. Bull. Acad. Sci. URSS. Sér. 4, 17–26 (1940)

    MathSciNet  MATH  Google Scholar 

  10. Brändle, C., Colorado, E., de Pablo, A., Sánchez, U.: A concave–convex elliptic problem involving the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 143(1), 39–71 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bueno, H., Ercole, G., Ferreira, W., Zumpano, A.: Existence and multiplicity of positive solutions for the \(p\)-Laplacian with nonlocal coefficient. J. Math. Anal. Appl. 343(4), 151–158 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Byeon, J., Oshita, Y.: Multi-bump standing waves with critical frequency for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linaire 27(4), 1121–1152 (2010)

    Article  MATH  Google Scholar 

  13. Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224(5), 2052–2093 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians, I. Regularity, maximum principles and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal. Non Linéaire 31(1), 23–53 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(8), 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Carrier, G.F.: On the nonlinear vibration problem of the elastic string. Q. Appl. Math. 3(2), 157–165 (1945)

    Article  MATH  Google Scholar 

  17. Chang, S.-M., Gustafson, S., Nakanishi, K., Tsai, T.-P.: Spectra of linearized operators for NLS solitary waves. SIAM J. Math. Anal. 39, 1070–1111 (2007/08)

  18. Chen, W.X., Fang, Y.Q., Yang, R.: Liouville theorems involving the fractional Laplacian on a half space. Adv. Math. 274(9), 167–198 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, W.X., Li, C.M., Li, Y.: A direct method of moving planes for the fractional Laplacian. Adv. Math. 308(21), 404–437 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cheng, B.T., Wu, X.: Existence results of positive solutions of Kirchhoff type problems. Nonlinear Anal. 71(10), 4883–4892 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chipot, M., Lovat, B.: Some remarks on nonlocal elliptic and parabolic problems. Nonlinear Anal. 30(7), 4619–4627 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chipot, M., Lovat, B.: On the asymptotic behavior of some nonlocal problem. Positivity 3(1), 65–81 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chipot, M., Roy, P.: Existence results for some functional elliptic equations. Differ. Integral Equ. 27(3/4), 289–300 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Chipot, M., Rodrigus, J.F.: On a class of nonlocal nonlinear elliptic problems. Math. Model. Numer. Anal. 26(3), 447–468 (1992)

    Article  MathSciNet  Google Scholar 

  25. Chipot, M., Corrêa, F.J.S.A.: Boundary layer solutions to functional elliptic equations. Bull. Braz. Math. Soc. 40(3), 381–393 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Corrêa, F.J.S.A., Delgado, M., Suárez, A.: Some nonlocal problems with nonlinear diffusion. Math. Comput. Model. 54(9–10), 2293–2305 (2011)

    Article  MATH  Google Scholar 

  27. Corrêa, F.J.S.A., Figueiredo, G.M.: A variational approach for a nonlocal and nonvariational elliptic problem. J. Integral Equ. Appl. 22(4), 8–12 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Corrêa, F.J.S.A.: On positive solutions of nonlocal and nonvariational elliptic problems. Nonlinear Anal. TMA 59(7), 1147–1155 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dai, Q.Y., Lan, E.H., Shi, F.L.: A priori bounds for positive solutions of Kirchhoff type equations. Comput. Math. Appl. 76(6), 1525–1534 (2018)

    Article  MathSciNet  Google Scholar 

  30. D’ancona, P., Spaghnolo, S.: Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent. Math. 108(1), 247–262 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Dávila, J., del Pino, M., Wei, J.C.: Concentrating standing waves for the fractional nonlinear Schrödinger equation. J. Differ. Equ. 256(2), 858–892 (2014)

    Article  MATH  Google Scholar 

  32. Dávila, J., del Pino, M., Sire, Y.: Nondegeneracy of the bubble in the critical case for nonlocal equations. Proc. Am. Math. Soc. 141(11), 3865–3870 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. del Pino, M., Dolbeault, J., Musso, M.: The Brezis–Nirenberg problem near criticality in dimension 3. J. Math. Pures Appl. 83(12), 1405–1456 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. del Pino, M., Kowalczyk, M., Wei, J.-C.: Concentration on curves for nonlinear Schrödinger equations. Commun. Pure Appl. Math. 60(1), 113–146 (2007)

    Article  MATH  Google Scholar 

  35. Do Ó, J.M., Iorca, S., Sánchez, J., Ubilla, P.: Positive solutions for some nonlocal and nonvariational elliptic systems. Complex Var. Elliptic Equ. 61(3), 297–314 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Figueiredo, G.M., Ikoma, N., Santos Júnio, J.R.: Existence and concentration result for the Kirchhoff Type equations with general nonlinearities. Arch. Ration. Mech. Anal. 213(3), 931–979 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Floer, A., Weinstein, A.: Nonspeading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69(3), 397–408 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  38. Frank, R., Lenamann, E.: Uniqueness of non-linear ground states for franctional Laplacians in \(\mathbb{R}\). Acta Math. 210(2), 261–318 (2013)

    Article  MathSciNet  Google Scholar 

  39. Frank, R., Lenamann, E., Silvestre, L.: Uniqueness of radial solutions for the franctional Laplacian. Commun. Pure Appl. Math. 69(9), 1671–1726 (2016)

    Article  Google Scholar 

  40. Gelson, C.G., Santos, D., Figueiredo, G.M.: Positive solutions for a class of nonlocal problems invovling Lebesgue generalized space: scalar and system cases. JEPE 2, 235–266 (2016)

    MATH  Google Scholar 

  41. Gidas, B., Ni, W. -M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \(\mathbb{R}^n\). In: Mathematical Analysis and Applications, Part A, Advances in Mathematics; Supplementary Studies 7A, pp. 369–402. Academic Press, New York (1981)

  42. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry, I. J. Funct. Anal. 74(1), 160–197 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  43. He, X.M., Zou, W.M.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in \(\mathbb{R}^3\). J. Differ. Equ. 252(2), 1813–1834 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kwong, M.K.: Uniqueness of positive solutions of \(\Delta u-u+u^p=0\) in \(\mathbb{R}^n\). Arch. Ration. Mech. Anal. 105(3), 243–266 (1989)

    Article  MATH  Google Scholar 

  45. Ladyzhenskaya, O.A.: The boundary value problems of mathematical physics (trans: from the Russian by Jack Lohwater). Applied Mathematical Sciences, 49. Springer, New York (1985)

  46. Li, G.B., Luo, P., Peng, S.J., Wang, C.H., Xiang, C.-L.: Uniqueness and Nondegeneracy of positive solutions to Kirchhoff equations and its applications in singular perturbation problems. arXiv:1703.05459

  47. Liu, J., Liao, J.F., Tang, C.L.: Positive solutions for Kirchhoff-type equations with critical exponent in \(\mathbb{R}^n\). J. Math. Anal. Appl. 429(2), 1153–1172 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Luo, P., Peng, S.J., Wang, C.H., Xiang, C.-L.: Multi-peak positive solutions to a class of Kirchhoff equations. arXiv:1708.01770

  49. Ma, T.F.: Remarks on an elliptic equation of Kirchhoff type. Nonlinear Anal. 63(5), e1967–e1977 (2005)

    Article  MATH  Google Scholar 

  50. Malchiodi, A., Montenegro, M.: Boundary concentration phenomena for a singularly perturbed elliptic problem. Commun. Pure Appl. Math. 55(12), 1507–1568 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  51. Musso, M., Salazar, D.: Multispike solutions for the Brezis–Nirenberg problem in dimension three. J. Differ. Equ. 264(11), 6663–6709 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  52. Noussair, E.S., Yan, S.S.: On positive multipeak solutions of a nonlinear elliptic problem. J. Lond. Math. Soc. 62(1), 213–227 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  53. Oh, Y.G.: Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of class (V)a. Commun. Partial Differ. Equ. 13(12), 1499–1519 (1988)

    Article  MATH  Google Scholar 

  54. Oh, Y.G.: On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Commun. Math. Phys. 131(2), 223–253 (1990)

    Article  MATH  Google Scholar 

  55. Oh, Y.G.: Stability of semiclassical bound states of nonlinear Schrödinger equations with potentials. Commun. Math. Phys. 121(1), 11–33 (1989)

    Article  MATH  Google Scholar 

  56. Perera, K., Zhang, Z.: Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ. 221(1), 246–255 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  57. Pohozaev, S.I.: A certain class of quasilinear hyperbolic equations. Mat. Sb. (N.S.) 96(138), 152–166, 168 (1975)

    MathSciNet  Google Scholar 

  58. Rey, O.: The role of the Green’s function in a non-linear elliptic equation involving the critical Sobolev exponent. J. Funct. Anal. 89(1), 1–52 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  59. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary. J. Math. Pures Appl. 101(3), 275–302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  60. Ros-Oton, X., Serra, J.: The Pohozaev identity for the fractional Laplacian. Arch. Ration. Mech. Anal. 213(2), 587–628 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  61. Servadei, R., Valdinoci, E.: The Brezis–Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367(1), 67–102 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  62. Spagnolo, S.: The Cauchy problem for Kirchhoff equations. In: Proceedings of the Second International Conference on Partial Differential Equations (Italian), Milan. Rend. Sem. Mat. Fis. Milano 62, pp. 17–51 (1992)

  63. Strauss, W.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55(2), 149–162 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  64. Wei, J.-C., Yan, S.S.: Infinitely many positive solutions for the nonlinear Schrödinger equations in \(\mathbb{R}^n\). Calc. Var. Partial Differ. Equ. 37(3–4), 423–439 (2010)

    Article  MATH  Google Scholar 

  65. Weinstein, M.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16(3), 472–491 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  66. Weinstein, M.: Lyapunov stability of ground states of nonlinear dispersive evolution equations. Commun. Pure Appl. Math. 39(1), 51–67 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank heartfeltly to anonymous referees for their invaluable comments which are helpful to improve the quality of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengmao Chen.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by NNSFC (Grant: No. 11671128).

Appendix

Appendix

Let \(B_{\alpha }(0)\) be the ball of \(\mathbb {R}^n\) defined in (4.51), \(S_\varepsilon \) be the operator defined in (4.6) and

$$\begin{aligned} S_1=\inf \left\{ \frac{\Vert u\Vert ^2}{\Vert u\Vert ^2_{L^2}}:0\not \equiv u\in H^1(\mathbb {R}^n)\right\} , \end{aligned}$$

we have,

Lemma A.1

Let \(\delta \) be the positive constant chosen in Lemma 4.2. Then there exists a positive constant \(\varepsilon _5\) such that for any \(\varepsilon \in (0,\varepsilon _5]\) and \(z\in B_{\varepsilon ^{1-\delta }}(0)\), we have

$$\begin{aligned} \Vert S_\varepsilon (U_{\varepsilon ,z})\Vert \le \varepsilon ^{2-3\delta } \end{aligned}$$
(5.1)

where \(\varepsilon _5\) depends only on \(|V|_{C^2(\mathbb {R}^n)}\), \(\tau \), \(C_1\), a, n, \(\Vert U\Vert \), \(S_1\) and \(\delta \).

Proof

From the definition of \(S_\varepsilon \), we have

$$\begin{aligned} \langle S_\varepsilon (U_{\varepsilon ,z}),\psi \rangle = \int _{\mathbb {R}^n}(V(\varepsilon y+z)-V(0))U\psi \left( y+\frac{z}{\varepsilon }\right) dy. \end{aligned}$$

Let \(C_1\) and \(\tau \) be the constants chosen in Theorem B given in Sect. 2. Recalling that \(A=A(\Vert U\Vert ^q_{L^q})\ge a>0\) is a constant, we let \(c=\max \{A^{\frac{n-1}{4}}C_1,\sqrt{A}\}\) and \(\omega _n\) be the volume of \(B_1(0)\subseteq \mathbb {R}^n\). It is easy to check that

$$\begin{aligned} \lim \limits _{\varepsilon \rightarrow 0}\frac{2\sqrt{c}\Vert V\Vert _{L^{\infty }(\mathbb {R}^n)}}{\sqrt{S_1}}\sqrt{\frac{c^3n\omega _n}{2\sqrt{\tau }}}\frac{2}{\varepsilon ^{2-3\delta }} e^{-\frac{\sqrt{\tau }}{c\varepsilon ^\delta }}=0. \end{aligned}$$

Therefore, there exists a constant \(\varepsilon _2>0\), for any \(\varepsilon \) satisfying \(0<\varepsilon \le \varepsilon _2\), we have

$$\begin{aligned} \frac{2\sqrt{c}\Vert V\Vert _{L^{\infty }(\mathbb {R}^n)}}{\sqrt{S_1}}\sqrt{\frac{c^3n\omega _n}{2\sqrt{\tau }}}e^{-\frac{\sqrt{\tau }}{c\varepsilon ^\delta }}\le \frac{\varepsilon ^{2-3\delta }}{2}. \end{aligned}$$
(5.2)

From Theorem B given in Sect. 2 and (2.3), for any y satisfying \(|y|\rightarrow \infty \), we have

$$\begin{aligned} |U(y)|\le ce^{-\frac{\sqrt{\tau }}{c}|y|}|y|^{-\frac{n-1}{2}}. \end{aligned}$$

This implies that for sufficiently small \(\varepsilon >0\),

$$\begin{aligned} \left( \int _{\mathbb {R}^n\setminus B_{\varepsilon ^{-\delta }}(0)}U^2(y)dy\right) ^{\frac{1}{2}}\le c\sqrt{n\omega _n}\left( \int _{\varepsilon ^{-\delta }} ^{\infty }e^{-\frac{2\sqrt{\tau }r}{c}}dr\right) ^{\frac{1}{2}} =\sqrt{\frac{c^3n\omega _n}{2\sqrt{\tau }}} e^{-\frac{\sqrt{\tau }}{c\varepsilon ^\delta }}. \end{aligned}$$
(5.3)

It follows from (5.2), (5.3) and Hölder inequality that

$$\begin{aligned} \begin{aligned}&\int _{\mathbb {R}^n\setminus B_{\varepsilon ^{-\delta }}(0)}|V(\varepsilon y+z)-V(0)|U\left| \psi \left( y+\frac{z}{\varepsilon }\right) \right| dy\\&\quad \le \frac{2\sqrt{c}\Vert V\Vert _{L^{\infty }(\mathbb {R}^n)}}{\sqrt{S_1}} \left( \int _{\mathbb {R}^n\setminus B_{\varepsilon ^{-\delta }}(0)}U^2(y)dy\right) ^{\frac{1}{2}}\Vert \psi \Vert \le \frac{\varepsilon ^{2-3\delta }}{2}\Vert \psi \Vert . \end{aligned} \end{aligned}$$
(5.4)

Moreover, since \(\delta >0\), we can check that there exists a constant \(\varepsilon _3\) such that for any \(\varepsilon \in (0,\varepsilon _3]\),

$$\begin{aligned} \frac{4\Vert U\Vert |V|_{C^2(\mathbb {R}^n)}}{S_1}\varepsilon ^{\delta }\le \frac{1}{2}. \end{aligned}$$
(5.5)

Since \(V\in C^2\) and 0 is the critical point of V, we see that there exists a constant \(\varepsilon _4\), for any \(\varepsilon \in (0,\varepsilon _4]\) and \(z\in B_{\varepsilon ^{1-\delta }}(0)\),

$$\begin{aligned} \Vert V(\varepsilon y+z)-V(0)\Vert _{L^{\infty }(B_{\varepsilon ^{-\delta }}(0))}\le |V|_{C^2(\mathbb {R}^n)}|\varepsilon y+z|^2\le 4|V|_{C^2(\mathbb {R}^n)}\varepsilon ^{2-2\delta }. \end{aligned}$$
(5.6)

It follows from (5.5), (5.6) and Hölder inequality that for any \(\varepsilon \in (0,\min \{\varepsilon _3,\varepsilon _4\}]\) and \(z\in B_{\varepsilon ^{1-\delta }}(0)\),

$$\begin{aligned} \begin{aligned} \int _{B_{\varepsilon ^{-\delta }}(0)}|V(\varepsilon y+z)-V(0)|U\left| \psi \left( y+\frac{z}{\varepsilon }\right) \right| dy&\le \frac{4\Vert U\Vert |V|_{C^2(\mathbb {R}^n)}}{S_1}\varepsilon ^{2-2\delta }\Vert \psi \Vert \\&\le \frac{4\Vert U\Vert |V|_{C^2(\mathbb {R}^n)}}{S_1}\varepsilon ^{\delta }\varepsilon ^{2-3\delta }\Vert \psi \Vert \\&\le \frac{\varepsilon ^{2-3\delta }}{2}\Vert \psi \Vert . \end{aligned}\end{aligned}$$
(5.7)

Let \(\varepsilon _5=\min \{\varepsilon _2,\varepsilon _3,\varepsilon _4\}\), from (5.4) and (5.7), for any \(\varepsilon \in (0,\varepsilon _5]\) and \(z\in B_{\varepsilon ^{1-\delta }}(0)\),

$$\begin{aligned} |\langle S_\varepsilon (U_{\varepsilon ,z}),\psi \rangle |\le \int _{\mathbb {R}^n}\left| (V(\varepsilon y+z)-V(0))U\psi \left( y+\frac{z}{\varepsilon }\right) \right| dy\le \varepsilon ^{2-3\delta }\Vert \psi \Vert . \end{aligned}$$
(5.8)

From the definition of norm, we get the desired estimate (5.1). This completes the proof of Lemma A.1. \(\square \)

Letting \(B_{\varepsilon }\) be a ball of \(H^1(\mathbb {R}^n)\) defined in (4.52), \(R_{\varepsilon ,z}\) and \(\{R^{(j)}_{\varepsilon ,z}\}_{j=1}^3\) be the operators defined in (4.8), (4.9), (4.10) and (4.11), we have,

Lemma A.2

Let \(\delta \) be the positive constant chosen in Lemma 4.2. There exist positive constants \(\varepsilon _6\) and \(c_1\) such that for any \(\varepsilon \in (0,\varepsilon _6]\) and any \(\phi _{\varepsilon }, \phi _{1,\varepsilon }\in B_{\varepsilon }\),

$$\begin{aligned}&\Vert R^{(1)}_{\varepsilon ,z}(\phi _\varepsilon )\Vert \le c_1\Vert \phi _\varepsilon \Vert ^{\min \{p,2\}}, \end{aligned}$$
(5.9)
$$\begin{aligned}&\Vert R^{(1)}_{\varepsilon ,z}(\phi _{1,\varepsilon })-R^{(1)}_{\varepsilon ,z}(\phi _{\varepsilon })\Vert \le c_1(\Vert \phi _{1,\varepsilon }\Vert +\Vert \phi _{\varepsilon }\Vert )^{\min \{p-1,1\}}\Vert \phi _{1,\varepsilon }-\phi _{\varepsilon }\Vert , \end{aligned}$$
(5.10)
$$\begin{aligned}&\Vert R^{(2)}_{\varepsilon ,z}(\phi _{\varepsilon })\Vert \le \left\{ \begin{array}{l@{\quad }l@{\quad }l} c_1\Vert \phi _\varepsilon \Vert ^{2}, \text {if}\ q=2,\\ c_1\Vert \phi _{\varepsilon }\Vert ^{\min \{q-1,2\}}, \text {if}\ q>2, \end{array} \right. \end{aligned}$$
(5.11)
$$\begin{aligned}&\Vert R^{(2)}_{\varepsilon ,z}(\phi _{1,\varepsilon })-R^{(2)}_{\varepsilon ,z}(\phi _{\varepsilon })\Vert \le \left\{ \begin{array}{l@{\quad }l@{\quad }l} c_1(\Vert \phi _{1,\varepsilon }\Vert +\Vert \phi _{\varepsilon }\Vert )\Vert \phi _{1,\varepsilon }-\phi _{\varepsilon }\Vert , \text {if}\ q=2,\\ c_1(\Vert \phi _{1,\varepsilon }\Vert +\Vert \phi _{\varepsilon }\Vert )^{\min \{q-2,1\}}\Vert \phi _{1,\varepsilon }-\phi _{\varepsilon }\Vert , \text {if}\ q>2, \end{array} \right. \end{aligned}$$
(5.12)
$$\begin{aligned}&\Vert R^{(3)}_{\varepsilon ,z}(\phi _\varepsilon )\Vert \le c_1\Vert \phi _\varepsilon \Vert ^2, \end{aligned}$$
(5.13)
$$\begin{aligned}&\Vert R^{(3)}_{\varepsilon ,z}(\phi _{1,\varepsilon })-R^{(3)}_{\varepsilon ,z}(\phi _{\varepsilon })\Vert \le c_1(\Vert \phi _{1,\varepsilon }\Vert +\Vert \phi _{\varepsilon }\Vert )\Vert \phi _{1,\varepsilon }-\phi _{\varepsilon }\Vert , \end{aligned}$$
(5.14)

and thus,

$$\begin{aligned} \Vert R_{\varepsilon ,z}(\phi _\varepsilon )\Vert \le c_1\Vert \phi _\varepsilon \Vert ^{\mu _1}, \end{aligned}$$
(5.15)

and

$$\begin{aligned} \Vert R_{\varepsilon ,z}(\phi _{1,\varepsilon })-R_{\varepsilon ,z}(\phi _{\varepsilon })\Vert \le c_1(\Vert \phi _{1,\varepsilon }\Vert +\Vert \phi _{\varepsilon }\Vert )^{\mu _2}\Vert \phi _{1,\varepsilon }-\phi _{\varepsilon }\Vert . \end{aligned}$$
(5.16)

where \(c_1\) is a positive constant, independent of \(\varepsilon \) and z,

$$\begin{aligned} \mu _1=\left\{ \begin{array}{l@{\quad }l@{\quad }l} \min \{p,2\}, \text {if}\ q=2,\\ \min \{p,q-1,2\}, \text {if}\ q>2, \end{array} \right. \mu _2=\left\{ \begin{array}{l@{\quad }l@{\quad }l} \min \{p-1,1\}, \text {if}\ q=2,\\ \min \{p-1,q-2,1\}, \text {if}\ q>2. \end{array} \right. \end{aligned}$$
(5.17)

Proof

From a similar argument adopted by O. Rey ([58]), we have

$$\begin{aligned} \Vert R^{(1)}_{\varepsilon ,z}(\phi _\varepsilon )\Vert \le c_{(1)}\Vert \phi _\varepsilon \Vert ^{\min \{p,2\}} \end{aligned}$$

and

$$\begin{aligned} \Vert R^{(1)}_{\varepsilon ,z}(\phi _\varepsilon )-R^{(1)}_{\varepsilon ,z}(\phi _{1,\varepsilon })\Vert \le c_{(2)}(\Vert \phi _{1,\varepsilon }\Vert +\Vert \phi _{\varepsilon }\Vert )^{\min \{p-1,1\}}\Vert \phi _{1,\varepsilon }-\phi _{\varepsilon }\Vert . \end{aligned}$$

Therefore, it suffices to show the inequalities (5.11) \(\sim \) (5.14). We divide the proof of Lemma A.2 into following four steps.

Step 1. The estimate of \(R^{(2)}_{\varepsilon ,z}(\phi _\varepsilon )\). From mean value theorem of elementary calculus, there exists \(\theta _1\in [0,1]\) such that

$$\begin{aligned} A(\Vert U_{\varepsilon ,z}+\phi _\varepsilon \Vert ^q_{L^q})-A(\Vert U_{\varepsilon ,z}\Vert ^q_{L^q}) =qA'(\Vert U_{\varepsilon ,z}+\theta _1\phi _\varepsilon \Vert ^q_{L^q})\int _{\mathbb {R}^n}|U_{\varepsilon ,z}+\theta _1\phi _\varepsilon |^{q-2} U_{\varepsilon ,z}\phi _{\varepsilon } dx. \end{aligned}$$

This implies that

$$\begin{aligned} \begin{aligned}&A(\Vert U_{\varepsilon ,z}+\phi _\varepsilon \Vert ^q_{L^q})-A(\Vert U_{\varepsilon ,z}\Vert ^q_{L^q}) -qA'(\Vert U_{\varepsilon ,z}\Vert ^q_{L^q})\int _{\mathbb {R}^n}U_{\varepsilon ,z}^{q-1}\phi _{\varepsilon } dx\\&\quad =q(A'(\Vert U_{\varepsilon ,z}+\theta _1\phi _\varepsilon \Vert ^q_{L^q})-A'(\Vert U_{\varepsilon ,z}\Vert _{L^q}^q)) \int _{\mathbb {R}^n}|U_{\varepsilon ,z}+\theta _1\phi _\varepsilon |^{q-2} U_{\varepsilon ,z}\phi _{\varepsilon }dx\\&\qquad +qA'(\Vert U_{\varepsilon ,z}\Vert _{L^q}^q)\int _{\mathbb {R}^n} (|U_{\varepsilon ,z}+\theta _1\phi _\varepsilon |^{q-2}-U_{\varepsilon ,z}^{q-2})U_{\varepsilon ,z}\phi _{\varepsilon } dx. \end{aligned}\end{aligned}$$
(5.18)

From mean value theorem of elementary calculus, there exists \(\theta _2\in [0,1]\) such that

$$\begin{aligned} |U_{\varepsilon ,z}+\theta _1\phi _\varepsilon |^q-U^q_{\varepsilon ,z}=q|U_{\varepsilon ,z}+ \theta _1\theta _2\phi _\varepsilon |^{q-2}\theta _1U_{\varepsilon ,z}\phi _\varepsilon . \end{aligned}$$

From Hölder inequality, we see that there exists a constant c, independent of \(\varepsilon \) and z, such that

$$\begin{aligned} \left| \int _{\mathbb {R}^n}|U_{\varepsilon ,z}+\theta _1\phi _\varepsilon |^q-U^q_{\varepsilon ,z}dx \right| \le c\Vert \phi _\varepsilon \Vert . \end{aligned}$$
(5.19)

Since \(A\in C^{1,1}_{loc}([0,+\infty ))\), from (5.19), we see that there exists a constant c, independent of \(\varepsilon \) and z, such that

$$\begin{aligned} \begin{aligned} |A'(\Vert U_{\varepsilon ,z}+\theta _1\phi _\varepsilon \Vert ^q_{L^q})-A'(\Vert U_{\varepsilon ,z}\Vert _{L^q}^q)|&\le c \left| \int _{\mathbb {R}^n}|U_{\varepsilon ,z}+\theta _1\phi _{\varepsilon }|^q-U_{\varepsilon ,z}^qdx \right| \le c\Vert \phi _{\varepsilon }\Vert . \end{aligned}\end{aligned}$$

This implies that there exists a constant c, independent of \(\varepsilon \) and z, such that

$$\begin{aligned} \begin{aligned} \left| (A'(\Vert U_{\varepsilon ,z}+\theta _1\phi _\varepsilon \Vert ^q_{L^q})-A'(\Vert U_{\varepsilon ,z}\Vert _{L^q}^q)) \int _{\mathbb {R}^n}|U_{\varepsilon ,z}+\theta _1\phi _\varepsilon |^{q-2}U_{\varepsilon ,z}\phi _{\varepsilon } dx \right| \le c\Vert \phi _\varepsilon \Vert ^2. \end{aligned} \end{aligned}$$
(5.20)

Therefore, if \(q=2\), it is easy to see that

$$\begin{aligned} \begin{aligned}&A(\Vert U_{\varepsilon ,z}+\phi _\varepsilon \Vert ^q_{L^q})-A(\Vert U_{\varepsilon ,z}\Vert ^q_{L^q}) -qA'(\Vert U_{\varepsilon ,z}\Vert ^q_{L^q})\int _{\mathbb {R}^n}U_{\varepsilon ,z}^{q-1}\phi _{\varepsilon } dx\\&\quad =q(A'(\Vert U_{\varepsilon ,z}+\theta _1\phi _\varepsilon \Vert ^q_{L^q})-A'(\Vert U_{\varepsilon ,z}\Vert _{L^q}^q)) \int _{\mathbb {R}^n}|U_{\varepsilon ,z}+\theta _1\phi _\varepsilon |^{q-2} U_{\varepsilon ,z}\phi _{\varepsilon }dx. \end{aligned}\end{aligned}$$
(5.21)

This, together with (5.20), implies that there exists a constant c, independent of \(\varepsilon \) and z, such that

$$\begin{aligned} \begin{aligned} \left| A(\Vert U_{\varepsilon ,z}+\phi _\varepsilon \Vert ^q_{L^q})-A(\Vert U_{\varepsilon ,z}\Vert ^q_{L^q}) -qA'(\Vert U_{\varepsilon ,z}\Vert ^q_{L^q})\int _{\mathbb {R}^n}U_{\varepsilon ,z}^{q-1}\phi _{\varepsilon } dx \right| \le c\Vert \phi _\varepsilon \Vert ^2 \end{aligned} \end{aligned}$$
(5.22)

if \(q=2\). From pp. 122 of Ambrosetti and Malchiodi [3], we get the following elementary inequality,

$$\begin{aligned} ||a+b|^{p_1}-a^{p_1}|\le \left\{ \begin{array}{l@{\quad }l@{\quad }l} c|b|^{p_1},\ \text {if}\ 0<p_1\le 1,\\ c(|b|+|b|^{p_1}), \text {if}\ p_1>1, \end{array} \right. \end{aligned}$$
(5.23)

for any \(a,b\in \mathbb {R}\) with \(|a|\le 1\) where c is a constant, depending only on \(p_1\). Therefore, if \(q>2\), we have

$$\begin{aligned} ||U_{\varepsilon ,z}+\theta _1\phi _\varepsilon |^{q-2}-U_{\varepsilon ,z}^{q-2}|\le \left\{ \begin{array}{l@{\quad }l@{\quad }l} c|\phi _\varepsilon |^{q-2}, \text {if}\ 2<q\le 3,\\ c(|\phi _\varepsilon |+|\phi _\varepsilon |^{q-2}), \text {if}\ q>3, \end{array} \right. \end{aligned}$$
(5.24)

where c is a constant, depending only on q and \(\Vert U\Vert _{C^0(\mathbb {R}^n)}\). It follows from Hölder inequality that there exists a constant c, independent of \(\varepsilon \) and z, such that

$$\begin{aligned} \left| \int _{\mathbb {R}^n}(|U_{\varepsilon ,z}+\theta _1\phi _\varepsilon |^{q-2}-U_{\varepsilon ,z}^{q-2})U_{\varepsilon ,z}\phi _{\varepsilon } dx \right| \le c\Vert \phi _\varepsilon \Vert ^{\min \{q-1,2\}}. \end{aligned}$$
(5.25)

Putting (5.20) and (5.25) into (5.18) , we see that there exists a constant c, independent of \(\varepsilon \) and z, such that

$$\begin{aligned} \left| A(\Vert U_{\varepsilon ,z}+\phi _\varepsilon \Vert ^q_{L^q})-A(\Vert U_{\varepsilon ,z}\Vert ^q_{L^q}) -qA'(\Vert U_{\varepsilon ,z}\Vert ^q_{L^q})\int _{\mathbb {R}^n}U_{\varepsilon ,z}^{q-1}\phi _{\varepsilon } dx \right| \le c\Vert \phi _{\varepsilon }\Vert ^{\min \{q-1,2\}} \end{aligned}$$
(5.26)

if \(q>2\). It follows from the definition of \(R^{(2)}_{\varepsilon ,z}\), (5.22) and (5.26) that there exists a constant \(c_{(3)}\), independent of \(\varepsilon \) and z, such that

$$\begin{aligned} \Vert R^{(2)}_{\varepsilon ,z}(\phi _{\varepsilon })\Vert \le \left\{ \begin{array}{l@{\quad }l@{\quad }l} c_{(3)}\Vert \phi _\varepsilon \Vert ^{2}, \text {if}\ q=2,\\ c_{(3)}\Vert \phi _{\varepsilon }\Vert ^{\min \{q-1,2\}}, \text {if}\ q>2. \end{array} \right. \end{aligned}$$
(5.27)

Step 2 . The estimate of \(\Vert R^{(2)}_{\varepsilon ,z}(\phi _{1,\varepsilon })-R^{(2)}_{\varepsilon ,z}(\phi _{\varepsilon })\Vert \). It follows from the definition of \(R^{(2)}_{\varepsilon ,z}\) that

$$\begin{aligned}\begin{aligned} R^{(2)}_{\varepsilon ,z}(\phi _{1,\varepsilon })-R^{(2)}_{\varepsilon ,z}(\phi _{\varepsilon }) =&-(A(\Vert U_{\varepsilon ,z}+\phi _{1,\varepsilon }\Vert ^q_{L^q})-A(\Vert U_{\varepsilon ,z}+\phi _{\varepsilon }\Vert ^q_{L^q})\\&-qA'(\Vert U_{\varepsilon ,z}\Vert ^q_{L^q})\int _{\mathbb {R}^n}U^{q-1}_{\varepsilon ,z}(\phi _{1,\varepsilon }-\phi _{\varepsilon })dy)\Delta U_{\varepsilon ,z}. \end{aligned}\end{aligned}$$

Adopting a similar argument of Step 1, we can show that there exists a constant c, independent of \(\varepsilon \) and z, such that

$$\begin{aligned} \begin{aligned}&\left| A(\Vert U_{\varepsilon ,z}+\phi _{1,\varepsilon }\Vert ^q_{L^q})-A(\Vert U_{\varepsilon ,z}+\phi _{\varepsilon }\Vert ^q_{L^q} -qA'(\Vert U_{\varepsilon ,z}\Vert ^q_{L^q})\int _{\mathbb {R}^n}U^{q-1}_{\varepsilon ,z}(\phi _{1,\varepsilon }-\phi _{\varepsilon })dy)\right| \\&\quad \le \left\{ \begin{array}{l@{\quad }l@{\quad }l} c(\Vert \phi _{1,\varepsilon }\Vert +\Vert \phi _{\varepsilon }\Vert )\Vert \phi _{1,\varepsilon }-\phi _{\varepsilon }\Vert , \text {if}\ q=2,\\ c(\Vert \phi _{1,\varepsilon }\Vert +\Vert \phi _{\varepsilon }\Vert )^{\min \{q-2,1\}}\Vert \phi _{1,\varepsilon }-\phi _{\varepsilon }\Vert , \text {if}\ q>2. \end{array} \right. \end{aligned}\end{aligned}$$
(5.28)

Therefore, there exists a constant \(c_{(4)}\), independent of \(\varepsilon \) and z, such that

$$\begin{aligned} \begin{aligned} \Vert R^{(2)}_{\varepsilon ,z}(\phi _{1,\varepsilon })-R^{(2)}_{\varepsilon ,z}(\phi _{\varepsilon })\Vert \le \left\{ \begin{array}{l@{\quad }l@{\quad }l} c_{(4)}(\Vert \phi _{1,\varepsilon }\Vert +\Vert \phi _{\varepsilon }\Vert )\Vert \phi _{1,\varepsilon }-\phi _{\varepsilon }\Vert , \text {if}\ q=2,\\ c_{(4)}(\Vert \phi _{1,\varepsilon }\Vert +\Vert \phi _{\varepsilon }\Vert )^{\min \{q-2,1\}}\Vert \phi _{1,\varepsilon }-\phi _{\varepsilon }\Vert , \text {if}\ q>2. \end{array} \right. \end{aligned}\end{aligned}$$
(5.29)

Step 3. The estimate of \(R^{(3)}_{\varepsilon ,z}(\phi _\varepsilon )\). From (5.22) and (5.26), we see that there exists a constant c, independent of \(\varepsilon \) and z, such that

$$\begin{aligned} |A(\Vert U_{\varepsilon ,y_\varepsilon }+\phi _\varepsilon \Vert _{L^q}^q)-A(\Vert U_{\varepsilon ,y_\varepsilon }\Vert _{L^q}^q)|\le c\Vert \phi _\varepsilon \Vert . \end{aligned}$$
(5.30)

It follows from the definition of \(R^{(3)}_{\varepsilon ,z}\) that there exists a constant \(c_{(5)}\), independent of \(\varepsilon \) and z, such that

$$\begin{aligned} \Vert R^{(3)}_{\varepsilon ,z}(\phi _{\varepsilon })\Vert \le c|A(\Vert U_{\varepsilon ,z}+\phi _{\varepsilon }\Vert ^q_{L^q})-A(\Vert U_{\varepsilon ,z}\Vert ^q_{L^q})|\Vert \phi _{\varepsilon }\Vert \le c_{(5)}\Vert \phi _{\varepsilon }\Vert ^2. \end{aligned}$$

Step 4 . The estimate of \(\Vert R^{(3)}_{\varepsilon ,z}(\phi _{1,\varepsilon })-R^{(3)}_{\varepsilon ,z}(\phi _{\varepsilon })\Vert \). From the definition of \(R^{(3)}_{\varepsilon ,z}\), we have

$$\begin{aligned} \begin{aligned}&R^{(3)}_{\varepsilon ,z}(\phi _{1,\varepsilon })-R^{(3)}_{\varepsilon ,z}(\phi _{\varepsilon })\\&\quad =-(A(\Vert U_{\varepsilon ,z}+\phi _{1,\varepsilon }\Vert ^q_{L^q})-A(\Vert U_{\varepsilon ,z}+\phi _{\varepsilon }\Vert ^q_{L^q}))\Delta \phi _{1,\varepsilon }\\&\qquad -(A(\Vert U_{\varepsilon ,z}+\phi _{\varepsilon }\Vert ^q_{L^q})-A(\Vert U_{\varepsilon ,z}\Vert ^q_{L^q})) \Delta (\phi _{1,\varepsilon }-\phi _{\varepsilon }). \end{aligned}\end{aligned}$$
(5.31)

It follows from (5.28) that there exists a constant c, independent of \(\varepsilon \) and z, such that

$$\begin{aligned} |A(\Vert U_{\varepsilon ,z}+\phi _{1,\varepsilon }\Vert ^q_{L^q})-A(\Vert U_{\varepsilon ,z}+\phi _{\varepsilon }\Vert ^q_{L^q})|\le c\Vert \phi _{1,\varepsilon }-\phi _{\varepsilon }\Vert . \end{aligned}$$
(5.32)

It follows from (5.30), (5.32) and (5.31) that there exists a constant \(c_{(6)}\), independent of \(\varepsilon \) and z, such that

$$\begin{aligned}\begin{aligned} \Vert R^{(3)}_{\varepsilon ,z}(\phi _{1,\varepsilon })-R^{(3)}_{\varepsilon ,z}(\phi _{\varepsilon })\Vert \le c_{(6)}((\Vert \phi _{1,\varepsilon }\Vert +\Vert \phi _{\varepsilon }\Vert )\Vert \phi _{1,\varepsilon }-\phi _{\varepsilon }\Vert . \end{aligned}\end{aligned}$$

Let \(c_1=\max \{c_{(k)}:k=1,2,\ldots ,6 \}\), we get the desired estimates and complete the proof of Lemma A.2. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Dai, Q. Concentrated solution for some non-local and non-variational singularly perturbed problems. Calc. Var. 58, 177 (2019). https://doi.org/10.1007/s00526-019-1626-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1626-9

Mathematics Subject Classification

Navigation