Skip to main content
Log in

Multiple positive solutions for a slightly subcritical Choquard problem on bounded domains

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we study a slightly subcritical Choquard problem on a bounded domain \(\Omega \). We prove that the number of positive solutions depends on the topology of the domain. In particular when the exponent of the nonlinearity approaches the critical one, we show the existence of \(\hbox {cat}(\Omega )+1\) solutions. Here \(\hbox {cat}(\Omega )\) denotes the Lusternik–Schnirelmann category.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O., Gao, F., Squassina, M., Yang, M.: Singularly perturbed critical Choquard equations. J. Differ. Equ. 263(7), 3943–3988 (2017)

    Article  MathSciNet  Google Scholar 

  2. Alves, C.O., Nobrega, A.B., Yang, M.: Multi-bump solutions for Choquard equation with deepening potential well. Calc. Var. 55, 48 (2016)

    Article  MathSciNet  Google Scholar 

  3. Ambrosetti, A., Malchiodi, A.: Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge Studies in Advanced Mathematics, vol. 104. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  4. Bahri, A., Coron, J.-M.: On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain. Commun. Pure Appl. Math. 41(3), 253–294 (1988)

    Article  MathSciNet  Google Scholar 

  5. Benci, V., Bonanno, C., Micheletti, A.M.: On the multiplicity of solutions of a nonlinear elliptic problem on Riemannian manifolds. J. Funct. Anal. 252(2), 464–489 (2007)

    Article  MathSciNet  Google Scholar 

  6. Benci, V., Cerami, G.: The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems. Arch. Rational Mech. Anal. 114(1), 79–93 (1991)

    Article  MathSciNet  Google Scholar 

  7. Benci, V., Cerami, G., Passaseo, D.: On the number of the positive solutions of some nonlinear elliptic problems. Nonlinear analysis, Sc. Norm. Super. di Pisa Quaderni, Scuola Norm. Sup., Pisa, pp. 93–107 (1991)

  8. Cingolani, S., Clapp, M., Secchi, S.: Multiple solutions to a magnetic nonlinear Choquard equation. Z. Angew. Math. Phys. 63(2), 233–248 (2012)

    Article  MathSciNet  Google Scholar 

  9. Clapp, M., Salazar, D.: Positive and sign changing solutions to a nonlinear Choquard equation. J. Math. Anal. Appl. 407(1), 1–15 (2013)

    Article  MathSciNet  Google Scholar 

  10. Esteban, M. J., Lions, P.-L.: Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinb. Sect. A 93(1–2), 1–14 (1982/83)

  11. Gao, F., Yang, M.: The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation. Sci. China Math. 61(7), 1219–1242 (2018)

    Article  MathSciNet  Google Scholar 

  12. Ghimenti, M., Moroz, V., Van Schaftingen, J.: Least action nodal solutions for the quadratic Choquard equation. Proc. Am. Math. Soc. 145(2), 737–747 (2017)

    Article  MathSciNet  Google Scholar 

  13. Ghimenti, M., Van Schaftingen, J.: Nodal solutions for the Choquard equation. J. Funct. Anal. 271(1), 107–135 (2016)

    Article  MathSciNet  Google Scholar 

  14. Lenzmann, E.: Uniqueness of ground states for pseudorelativistic Hartree equations. Anal. PDE 2(1), 1–27 (2009)

    Article  MathSciNet  Google Scholar 

  15. Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57(2), 93–105 (1976/77)

  16. Lions, P.-L.: The Choquard equation and related questions. Nonlinear Anal. 4(6), 1063–1072 (1980)

    Article  MathSciNet  Google Scholar 

  17. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001)

    Google Scholar 

  18. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265(2), 153–184 (2013)

    Article  MathSciNet  Google Scholar 

  19. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: Hardy–Littlewood–Sobolev critical exponent. Commun. Contemp. Math. 17(5), 12 (2015)

    Article  MathSciNet  Google Scholar 

  20. Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195(2), 455–467 (2010)

    Article  MathSciNet  Google Scholar 

  21. Siciliano, G.: Multiple positive solutions for a Schrödinger–Poisson–Slater system. J. Math. Anal. Appl. 365(1), 288–299 (2010)

    Article  MathSciNet  Google Scholar 

  22. Struwe, M.: Variational methods, 4th edn, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 34. Springer-Verlag, Berlin, 2008. Applications to nonlinear partial differential equations and Hamiltonian systems

  23. Wei, J., Winter, M.: Strongly interacting bumps for the Schrödinger–Newton equations. J. Math. Phys. 50(1), 22 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Ghimenti.

Additional information

Communicated by M. Struwe.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Marco Ghimenti: Partially supported by PRA Università di Pisa.

Proof of Theorem 5.1

Proof of Theorem 5.1

For the sake of completeness, we sketch here the proof of Theorem 5.1. We follow Lemma 2.3, Theorem 3.1 and Lemma 3.3 of [22].

First of all we recall that a (PS)-sequence for \(I_*^\Omega \) is bounded. Hence, up to a subsequence, we may assume \(v_n \rightharpoonup v\) in \(H_0^1(\Omega )\) and v solves Problem (36). Then, if we consider \(w_n=v_n-v\) we have \(w_n\rightarrow 0\) in \(L^2(\Omega )\) and, by Vitali’s convergence

$$\begin{aligned} \begin{aligned} \int _\Omega&(|\nabla (v_n)|^2-|\nabla w_n|^2)\mathop {}\!\mathrm {d}x=\int _\Omega \int _0^1 \frac{\mathop {}\!\mathrm {d}}{\mathop {}\!\mathrm {d}t}|\nabla v_n+(t-1)\nabla v|^2\mathop {}\!\mathrm {d}t \mathop {}\!\mathrm {d}x\\&=2\int _0^1\int _\Omega (\nabla v_n+(t-1)\nabla v)\nabla v\mathop {}\!\mathrm {d}x\mathop {}\!\mathrm {d}t\rightarrow 2\int _0^1\int _\Omega t|\nabla v |^2\mathop {}\!\mathrm {d}x \mathop {}\!\mathrm {d}t\\&=\int _\Omega |\nabla v|^2\mathop {}\!\mathrm {d}x \end{aligned} \end{aligned}$$
(80)

as \(n\rightarrow +\infty \). Similarly we obtain

$$\begin{aligned} \int _\Omega (|v_n|^2-|w_n|^2)\mathop {}\!\mathrm {d}x\rightarrow \int _\Omega |v|^2 \mathop {}\!\mathrm {d}x \end{aligned}$$
(81)

as \(n \rightarrow +\infty \). Then, by [11, Lemma 2.2] it holds

$$\begin{aligned} \begin{aligned} \int _\Omega \int _\Omega \frac{|v_n(x)|^{2_\mu ^*}|v_n(y)|^{2_\mu ^*}}{|x-y|^\mu }\mathop {}\!\mathrm {d}x\mathop {}\!\mathrm {d}y=&\int _\Omega \int _\Omega \frac{|w_n(x)|^{2_\mu ^*}|w_n(y)|^{2_\mu ^*}}{|x-y|^\mu }\mathop {}\!\mathrm {d}x\mathop {}\!\mathrm {d}y\\&+\int _\Omega \int _\Omega \frac{|v(x)|^{2_\mu ^*}|v(y)|^{2_\mu ^*}}{|x-y|^\mu }\mathop {}\!\mathrm {d}x\mathop {}\!\mathrm {d}y+o(1) \end{aligned} \end{aligned}$$
(82)

where \(o(1)\rightarrow 0\) as \(n\rightarrow +\infty \).

Therefore we obtain

$$\begin{aligned} I_*^\Omega (v_n)=I_*^\Omega (v)+I_*^\Omega (w_n)+o(1) \end{aligned}$$

and in the same way

$$\begin{aligned} (I_*^\Omega )'(v_n)=(I_*^\Omega )'(v)+(I_*^\Omega )'(w_n)+o(1)=(I_*^\Omega )'(w_n)+o(1) \end{aligned}$$

where \(o(1)\rightarrow 0\) as \(n\rightarrow +\infty \).

We need the following lemma:

Lemma A.1

[22, Lemma 3.3] Let \(\{z_n\}_{n\in {\mathbb {N}}}\) be a (PS)-sequence for \(I_*^\Omega \) in \(H_0^1(\Omega )\) such that \(z_n \rightharpoonup 0\). Then there exist two sequences \(\{x_n\}_{n\in {\mathbb {N}}}\subset \Omega \) of points and \(\{R_n\}_{n\in {\mathbb {N}}}\) of radii, \(R_n \rightarrow +\infty \) as \(n \rightarrow +\infty \), a non-trivial solution z to the limit problem (20) and a (PS)-sequence \(\{w_n\}_{n\in {\mathbb {N}}}\) for \(I_*^\Omega \) in \(H_0^1(\Omega )\) such that for a subsequence \(\{z_n\}_{n\in {\mathbb {N}}}\) there holds

$$\begin{aligned} z_n=w_n+R_n^{\frac{N-2}{2}}z(R_n(\cdot -x_n))+o(1) \end{aligned}$$

where \(o(1) \rightarrow 0\) as \(n\rightarrow +\infty \). In particular \(w_n \rightharpoonup 0 \) and

$$\begin{aligned} I_*^\Omega (w_n)=I_*^\Omega (z_n)-I_*(z)+o(1). \end{aligned}$$

Moreover

$$\begin{aligned} R_n{{\,\mathrm{dist}\,}}(x_n,\partial \Omega )\rightarrow \infty . \end{aligned}$$

Finally if \(I_*^\Omega (z_n)\rightarrow m<m_*\), the sequence \(\{z_n\}_{n\in {\mathbb {N}}}\) is relatively compact and hence \(z_n\rightarrow 0\) in \(H_0^{1}(\Omega )\), \(I_*^\Omega (z_n)\rightarrow m=0\) as \(n\rightarrow +\infty \).

Proof

We begin noticing that, being \(m_*^\Omega :=\inf _{{\mathcal {N}}_*^\Omega }I_*^\Omega \), we can suppose that \(I_*^\Omega (z_n)\rightarrow m \ge m_*^\Omega =\Big (\dfrac{2_\mu ^*-1}{2\cdot 2_\mu ^*}\Big )S_{H,L}^{\frac{2_\mu ^*}{2_\mu ^*-1}}\).

Then, being \((I_*^\Omega )'(z_n)\rightarrow 0\) we have

$$\begin{aligned} \Big (\dfrac{2_\mu ^*-1}{2\cdot 2_\mu ^*}\Big )\Vert z_n\Vert _\lambda ^2=I_*^\Omega (z_n)-\frac{1}{2\cdot 2_\mu ^*}\langle z_n, (I_*^\Omega )'(z_n)\rangle \rightarrow m \end{aligned}$$

and hence

$$\begin{aligned} \liminf _{n\rightarrow +\infty }\Vert z_n\Vert _\lambda ^2=m \Big (\frac{2\cdot 2_\mu ^*}{2_\mu ^*-1} \Big )\ge S_{H,L}^{\frac{2_\mu ^*}{2_\mu ^*-1}}. \end{aligned}$$
(83)

Let we call

$$\begin{aligned} Q_n(r):=\sup _{x\in \Omega }\int _{B_r(x)}(|\nabla z_n|^2+\lambda |z_n|^2)\mathop {}\!\mathrm {d}x, \end{aligned}$$

choose \(x \in \Omega \) and consider

$$\begin{aligned} {\tilde{z}}_n:=R_n^{\frac{2-N}{2}}z_n\left( \frac{x}{R_n}+x_n\right) . \end{aligned}$$

It results

$$\begin{aligned} {\tilde{Q}}_n(1)=\sup _{\begin{array}{c} x\in {{\mathbb {R}}^N}\\ x/R_n+x_n \in \Omega \end{array}}\int _{B_1(x)}(|\nabla {\tilde{z}}_n|^2+\lambda |{\tilde{z}}_n|^2)\mathop {}\!\mathrm {d}x=\int _{B_1(0)}(|\nabla {\tilde{z}}_n|^2+\lambda |{\tilde{z}}_n|^2)\mathop {}\!\mathrm {d}x=\frac{1}{2L}S_{H,L}^{\frac{2_\mu ^*}{2_\mu ^*-1}} \end{aligned}$$

where \(L\in {\mathbb {N}}\) is such that \(B_2(0)\) is covered by L balls of radius 1. It is easy to see that, from (83), \(R_n\ge R_0>0\) uniformly in n. Now denote with \({\tilde{\Omega }}_n:=\left\{ x\in {{\mathbb {R}}^N}:\frac{x}{R_n}+x_n\in \Omega \right\} \) so that we can regard \({\tilde{z}}_n\in H_0^1({\tilde{\Omega }}_n)\subset H^{1}({{\mathbb {R}}^N})\). It holds

$$\begin{aligned} \Vert {\tilde{z}}_n\Vert _\lambda ^2=\Vert z_n\Vert _\lambda ^2\rightarrow m \Big (\frac{2\cdot 2_\mu ^*}{2_\mu ^*-1} \Big )<\infty , \end{aligned}$$

so we can assume \({\tilde{z}}_n \rightharpoonup z\) in \(H^{1}({{\mathbb {R}}^N})\).

Proceeding as in [21, Lemma 3.3], replacing \(\beta ^*\) with \(m_*^\Omega \) and \(E_0\) with \(I_*^\Omega \), we obtain that \({\tilde{z}}_n \rightarrow z\) in \(H^1(\Omega ')\) for any \(\Omega ' \subset \subset {{\mathbb {R}}^N}\).

Now we distinguish two cases:

  • 1) \(R_n {{\,\mathrm{dist}\,}}(x_n, \partial \Omega )\le c <\infty \) uniformly.

    In this case, less than a rotation, we may suppose that the sequence \({\tilde{\Omega }}_n\) exhausts

    $$\begin{aligned} {\tilde{\Omega }}_\infty ={\mathbb {R}}_+^N=\{x=(x_1,\ldots , x_N); x_1>0 \}. \end{aligned}$$
  • 2) \(R_n {{\,\mathrm{dist}\,}}(x_n, \partial \Omega )\rightarrow \infty \) that implies \({\tilde{\Omega }}_n\rightarrow {\tilde{\Omega }}_\infty ={{\mathbb {R}}^N}.\)

In both cases, for any \(\varphi \in C_0^\infty ({\tilde{\Omega }}_\infty )\), we get \(\varphi \in C_0^\infty ({\tilde{\Omega }}_n)\) for n large, so

$$\begin{aligned} \langle \varphi , (I_*^\Omega )'(z,{\tilde{\Omega }}_\infty )\rangle =\lim _{n\rightarrow \infty }\langle \varphi , (I_*^\Omega )'({\tilde{z}}_n,{\tilde{\Omega }}_n)\rangle =0 \end{aligned}$$

for all these \(\varphi \). Hence \(z\in H_0^{1}({\tilde{\Omega }}_\infty )\) and weakly solves (20) on \({\tilde{\Omega }}_\infty \). But in the case 1) by [11, Theorem 1.5] and [10, Theorem I.1.], \(z\equiv 0\). Therefore it has to be \(R_n {{\,\mathrm{dist}\,}}(x_n, \partial \Omega )\rightarrow \infty \).

We conclude the proof letting \(\varphi \in C_0^\infty ({{\mathbb {R}}^N})\) such that \(0\le \varphi \le 1\), \(\varphi \equiv 1\) in \(B_1(0)\), \(\varphi \equiv 0\) outside \(B_2(0)\) and

$$\begin{aligned} w_n(x)=z_n(x)-R_n^{\frac{N-2}{2}}z(R_n(x-x_n))\cdot \varphi ({\bar{R}}_n(x-x_n))\in H_0^{1}(\Omega ), \end{aligned}$$

where \(\{R_n \}_{n\in {\mathbb {N}}}\) is chosen such that \({\tilde{R}}_n:=R_n({\bar{R}}_n)^{-1}\rightarrow \infty \) as \(n \rightarrow +\infty \), i.e.

$$\begin{aligned} {\tilde{w}}_n=R_n^{\frac{2-N}{2}}w_n\Big (\frac{x}{R_n}+x_n\Big )={\tilde{z}}_n(x)-z(x)\varphi \Big (\frac{x}{{\tilde{R}}_n}\Big ). \end{aligned}$$

Then we may proceed as in [22, Proof of Lemma 3.3] obtaining \({\tilde{w}}_n={\tilde{z}}_n-z+o(1)\) with \(o(1)\rightarrow 0\) as \(n\rightarrow +\infty \) and using (80)–(82) we get

$$\begin{aligned} I_*^\Omega (w_n)=I_*({\tilde{w}}_n)=I_*({\tilde{z}}_n)-I_*^\Omega (z)+o(1) \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \Vert (I_*^\Omega )'(w_n,\Omega )\Vert _{H^{-1}}&=\Vert I_*'({\tilde{w}}_n,{\tilde{\Omega }}_n)\Vert _{H^{-1}}\le \Vert I_*'({\tilde{z}}_n,{\tilde{\Omega }}_n)\Vert _{H^{-1}}\\&\quad +\Vert (I_*^\Omega )'(z,{{\mathbb {R}}^N})\Vert _{H^{-1}}+o(1)=\Vert (I_*^\Omega )'(z_n,\Omega )\Vert _{H^{-1}}+o(1)\rightarrow 0 \end{aligned} \end{aligned}$$
(84)

as \(n\rightarrow \infty \) and this conclude the proof. \(\square \)

Applying Lemma A.1 to sequence \(z_n^1:=v_n-v\), \(z_n^j:=~v_n-v-\sum _{i=1}^{j-1}{v_n^i}=z_n^{j-1}-v_n^{j-1}\) with \(j>1\) and

$$\begin{aligned} v_n^i(x):=(R_n^i)^{\frac{N-2}{2}}v^i(R_n^i(x-x_n^i)), \end{aligned}$$

by induction we get

$$\begin{aligned} \begin{aligned} I_*^\Omega (z_n^i)&=I_*^\Omega (v_n)-I_*^\Omega (v)-\sum _{i=1}^{j-1}{I_*(v^i)}+o(1)\\&\le I_*^\Omega (v_n)-(j-1)m^*+o(1). \end{aligned} \end{aligned}$$
(85)

Note that for large j, the latter will be negative, so by Lemma A.1 the induction will stop after some index \(k>0\). For this index we have

$$\begin{aligned} z_n^{k+1}=v_n-v-\sum _{j=1}^k{v_n^j}\rightarrow 0 \end{aligned}$$

and

$$\begin{aligned} I_*^\Omega (v_n)-I_*^\Omega (v)-\sum _{j=1}^k{I_*(v^j)}\rightarrow 0, \end{aligned}$$

so we conclude the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghimenti, M., Pagliardini, D. Multiple positive solutions for a slightly subcritical Choquard problem on bounded domains. Calc. Var. 58, 167 (2019). https://doi.org/10.1007/s00526-019-1605-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1605-1

Mathematics Subject Classification

Navigation