Skip to main content
Log in

Existence of \(C^\alpha \) solutions to integro-PDEs

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper is concerned with existence of a \(C^{\alpha }\) viscosity solution of a second order non-translation invariant integro-PDE. We first obtain a weak Harnack inequality for such integro-PDE. We then use the weak Harnack inequality to prove Hölder regularity and existence of solutions of the integro-PDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caffarelli, L.A.: Interior a priori estimates for solutions of fully nonlinear equations. Ann. Math. (2) 130(1), 189–213 (1989)

    Article  MathSciNet  Google Scholar 

  2. Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations. American Mathematics Society Colloquium Publications, vol. 43. American Mathematics Society, Providence (1995)

    MATH  Google Scholar 

  3. Caffarelli, L.A., Crandall, M.G., Kocan, M., Święch, A.: On viscosity solutions of fully nonlinear equations with measurable ingredients. Commun. Pure Appl. Math. 49(4), 365–397 (1996)

    Article  MathSciNet  Google Scholar 

  4. Caffarelli, L.A., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. 62(5), 597–638 (2009)

    Article  MathSciNet  Google Scholar 

  5. Caffarelli, L.A., Silvestre, L.: Regularity results for nonlocal equations by approximation. Arch. Ration. Mech. Anal. 200(1), 59–88 (2011)

    Article  MathSciNet  Google Scholar 

  6. Caffarelli, L.A., Silvestre, L.: The Evans–Krylov theorem for nonlocal fully nonlinear equations. Ann. Math. (2) 174(2), 1163–1187 (2011)

    Article  MathSciNet  Google Scholar 

  7. Chang Lara, H., Dávila, G.: Regularity for solutions of nonlocal parabolic equations. Calc. Var. Partial Differ. Equ. 49(1–2), 139–172 (2014)

    Article  Google Scholar 

  8. Chang Lara, H., Dávila, G.: Regularity for solutions of nonlocal parabolic equations II. J. Differ. Equ. 256(1), 130–156 (2014)

    Article  MathSciNet  Google Scholar 

  9. Chang Lara, H., Kriventsov, D.: Further time regularity for non-local, fully non-linear parabolic equations. Commun. Pure Appl. Math. 70(5), 950–977 (2017)

    Article  Google Scholar 

  10. Courrege, P.: Sur la forme intégro-différentielle des opérateurs de \(c_k^\infty \) dans c satisfaisant au principe du maximum. Séminaire Brelot-Choquet-Deny. Théorie du Potentiel 10(1), 1–38 (1965)

    Google Scholar 

  11. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differetial equations. Bull. Am. Math. Soc. 27(1), 1–67 (1992)

    Article  Google Scholar 

  12. Dong, H., Jin, T., Zhang, H.: Dini and Schauder estimates for nonlocal fully nonlinear parabolic equations with drifts. Anal. PDE 11(6), 1487–1534 (2018)

    Article  MathSciNet  Google Scholar 

  13. Dong, H., Zhang, H.: Dini estimates for nonlocal fully nonlinear elliptic equations. Ann. Inst. Henri Poincaré Anal. Non Linéaire 35(4), 971–992 (2018)

    Article  MathSciNet  Google Scholar 

  14. Dong, H., Zhang, H.: On Schauder estimates for a class of nonlocal fully nonlinear parabolic equation. Calc. Var. Partial Differ. Equ. 58(2), 40 (2019)

    Article  MathSciNet  Google Scholar 

  15. Dong, H., Kim, D.: Schauder estimates for a class of non-local elliptic equations. Discrete Contin. Dyn. Syst. 33(6), 2319–2347 (2013)

    Article  MathSciNet  Google Scholar 

  16. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions. Stochastic Modelling and Applied Probability, vol. 25, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  17. Giga, Y., Namba, T.: Well-posedness of Hamilton–Jacobi equations with Caputo’s time fractional derivative. Commun. Partial Differ. Equ. 42(7), 1088–1120 (2017)

    Article  MathSciNet  Google Scholar 

  18. Gimbert, F., Lions, P.-L.: Existence and regularity results for solutions of second-order, elliptic integro-differential operators. Ric. Mat. 33(2), 315–358 (1984)

    MathSciNet  MATH  Google Scholar 

  19. Gong, R., Mou, C., Swiech, A.: Stochastic Representations for Solutions to Parabolic Dirichlet Problems for Nonlocal Bellman Equations, preprint (2017). arXiv:1709.00193

  20. Guillen, N., Schwab, R.: Min–max formulas for nonlocal elliptic operators, preprint (2016). arXiv:1606.08417

  21. Imbert, C.: Alexandroff–Bakelman–Pucci and Harnack inequality for degenerate/singularly non-linear elliptic equations. J. Differ. Equ. 250(3), 1553–1574 (2011)

    Article  Google Scholar 

  22. Ishii, H.: Perron’s method for Hamilton–Jacobi equations. Duke Math. J. 55(2), 369–384 (1987)

    Article  MathSciNet  Google Scholar 

  23. Ishii, H.: On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDEs. Commun. Pure Appl. Math. 42(1), 15–45 (1989)

    Article  MathSciNet  Google Scholar 

  24. Jin, T., Xiong, J.: Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete Contin. Dyn. Syst. 35(12), 5977–5998 (2015)

    Article  MathSciNet  Google Scholar 

  25. Jin, T., Xiong, J.: Schauder estimates for nonlocal fully nonlinear equations. Ann. Inst. Henri Poincaré Anal. Non Linéaire 33(5), 1375–1407 (2016)

    Article  MathSciNet  Google Scholar 

  26. Koike, S.: Perron’s method for \(L^p\)-viscosity solutions. Saitama Math. J. 23, 9–28 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Koike, S., Święch, A.: Representation formulas for solutions of Isaac integro-PDE. Indiana Univ. Math. J. 62(5), 1473–1502 (2013)

    Article  MathSciNet  Google Scholar 

  28. Kriventsov, D.: \(C^{1,\alpha }\) interior regularity for nonlinear nonlocal elliptic equations with rough kernels. Commun. Partial Differ. Equ. 38(12), 2081–2106 (2013)

    Article  MathSciNet  Google Scholar 

  29. Mikulyavichyus, R., Pragarauskas, G.: Classical solutions of boundary value problems for some nonlinear integro-differential equations. Liet. Mat. Rink. 34(3), 347–361 (1994) (in Russian). Translation in Lithuanian Math. J. 34(3), 275–287 (1995)

  30. Mikulevicius, R., Pragarauskas, H.: On the Existence of Viscosity Solutions To Boundary Value Problems for Integrodifferential Bellman Equation. Probability Theory and Mathematical Statistics (Tokyo, 1995), pp. 327–342. World Scientific Publishing, River Edge (1996)

    MATH  Google Scholar 

  31. Mikulyavichyus, R., Pragarauskas, G.: Nonlinear potentials of the Cauchy–Dirichlet problem for the Bellman integro-differential equation. Liet. Mat. Rink. 36(2), 178–218 (1996) (in Russian). Translation in Lithuanian Math. J. 36(2), 142–173 (1997)

  32. Mikulevicius, R., Pragarauskas, H.: On Cauchy–Dirchlet Problem for Linear Integro-differential Equation in Weighted Sobolev Spaces, Stochastic Differential Equations: Theory and Applications. Interdisciplinary Mathematical Sciences, vol. 2, pp. 357–374. World Scientific Publishing, Hackensack (2007)

    MATH  Google Scholar 

  33. Mou, C.: Interior regularity for nonlocal fully nonlinear equations with Dini continuous terms. J. Differ. Equ. 260(11), 7892–7922 (2016)

    Article  MathSciNet  Google Scholar 

  34. Mou, C.: Semiconcavity of viscosity solutions for a class of degenerate elliptic integro-differential equations in \({\mathbb{R}}^n\). Indiana Univ. Math. J. 65(6), 1891–1920 (2016)

    Article  MathSciNet  Google Scholar 

  35. Mou, C.: Perron’s method for nonlocal fully nonlinear equations. Anal. PDE 10(5), 1227–1254 (2017)

    Article  MathSciNet  Google Scholar 

  36. Mou, C.: Remarks on Schauder estimates and existence of classical solutions for a class of uniformly parabolic Hamilton-Jacobi-Bellman integro-PDE. J. Dyn. Differ. Equ. 31(2), 719–743 (2019)

    Article  MathSciNet  Google Scholar 

  37. Mou, C., Święch, A.: Uniqueness of viscosity solutions for a class of integro-differential equations. NoDEA Nonlinear Differ. Equ. Appl. 22(6), 1851–1882 (2015)

    Article  MathSciNet  Google Scholar 

  38. Mou, C., Święch, A.: Aleksandrov–Bakelman–Pucci maximum principles for a class of uniformly elliptic and parabolic integro-PDE. J. Differ. Equ. 264(4), 2708–2736 (2018)

    Article  MathSciNet  Google Scholar 

  39. Namba, T.: On existence and uniqueness of second order fully nonlinear PDEs with Caputo time fractional derivatives. NoDEA Nonlinear Differ. Equ. Appl. 25(3), Art. 23 (2018)

  40. Serra, J.: \(C^{\sigma +\alpha }\) regularity for concave nonlocal fully nonlinear elliptic equations with rough kernels. Calc. Var. Partial Differ. Equ. 54(4), 3571–3601 (2015)

    Article  MathSciNet  Google Scholar 

  41. Schwab, R., Silvestre, L.: Regularity for parabolic integro-differential equations with very irregular kernels. Anal. PDE 9(3), 727–772 (2016)

    Article  MathSciNet  Google Scholar 

  42. Silvestre, L.: On the differentiability of the solution to the Hamilton–Jacobi equation with critical fractional diffusion. Adv. Math. 226(2), 2020–2039 (2011)

    Article  MathSciNet  Google Scholar 

  43. Yu, H.: \(W^{\sigma,\epsilon }\)-estimates for nonlocal elliptic equations. Ann. Inst. Henri Poincaré Anal. Non Linéaire 34(5), 1141–1153 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenchen Mou.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this “Appendix”, we give the proof of Theorem 3.4.

Lemma A.1

Let \(\Omega \) be a bounded domain and let \(\{\Omega _j\}_{j=1}^{\infty }\) be a set of domains such that \(\Omega _j\subset \Omega _{j+1}\) and \(\cup _{j=1}^{\infty }\Omega _j=\Omega \). Let \(u_j\) be a continuous function defined on \({\mathbb {R}}^d\) such that \(u_j\) converges uniformly to a continuous function u in \({\widetilde{\Omega }}_{\mathrm{diam}\Omega }\). Then

$$\begin{aligned} \limsup _{j\rightarrow \infty }\Gamma _{\Omega _j,r}^{n,+}(u_j)\subset \Gamma _{\Omega ,r}^{n,+}(u) \end{aligned}$$

where

$$\begin{aligned} \Gamma _{\Omega ,r}^{n,+}(u):=\{x\in \Omega :\,\, \exists p,|p|\le r,\, \text {such that}\,\, u(y)\le u(x)+ \langle p, y-x \rangle \,\,\text {for}\,\, y\in {{\tilde{\Omega }}}_{\mathrm{diam}\Omega }\}. \end{aligned}$$

Proof

The proof is very similar to Lemma A.1 in [3]. \(\square \)

For any \(\epsilon >0\) and \(u:{\mathbb {R}}^d\rightarrow {\mathbb {R}}\), we define the sup-convolution of u by

$$\begin{aligned} u^\epsilon (x)=\sup _{y\in {\mathbb {R}}^d}\left\{ u(y)-\frac{|x-y|^2}{2\epsilon }\right\} . \end{aligned}$$

The following Lemma A.2 can be found in [3] and [11].

Lemma A.2

Let u be a bounded continuous function in \({\mathbb {R}}^d\). Then

  1. (i)

    \(u^\epsilon \rightarrow u\) as \(\epsilon \rightarrow 0\) uniformly in any compact set of \({\mathbb {R}}^d\);

  2. (ii)

    \(u^\epsilon \) has the Taylor expansion up to second order at a.e. \(x\in {\mathbb {R}}^d\), i.e.

    $$\begin{aligned} u^\epsilon (y)= & {} u^\epsilon (x)+Du^\epsilon (x)\cdot (y-x)+\frac{1}{2}D^2u^\epsilon (x)(y-x)\cdot (y-x)\\&+o(|x-y|^2)\quad \text {a.e. }x\in {\mathbb {R}}^d; \end{aligned}$$
  3. (iii)

    \(D^2u^\epsilon (x)\ge -\frac{1}{\epsilon }I\) a.e. in \({\mathbb {R}}^d\).

  4. (iv)

    If \(u_\delta ^\epsilon \) is a standard modification of \(u^\epsilon \), then \(D^2u_\delta ^\epsilon \ge -\frac{1}{\epsilon }I\) and

    $$\begin{aligned} D^2u_\delta ^\epsilon (x)\rightarrow D^2u^\epsilon (x)\quad \text {a.e. in }{\mathbb {R}}^d\text { as }\delta \rightarrow 0. \end{aligned}$$

Lemma A.3

Let \(\Omega \) be a bounded domain. Let u be a bounded continuous function and solve

$$\begin{aligned} -{\mathcal {P}}^+(D^2u)(x)-{\mathcal {P}}_{K}^+(u)(x)-C_0|Du(x)|\le f(x)\quad \text {in }\Omega \end{aligned}$$
(A.1)

in the viscosity sense, then

$$\begin{aligned} -{\mathcal {P}}^+(D^2u^{\epsilon })(x)-{\mathcal {P}}_{K}^+(u^\epsilon )(x)-C_0|Du^\epsilon (x)|\le f(x^\epsilon ),\quad \text {a.e in }\Omega _{2\left( \epsilon \Vert u\Vert _{L^\infty ({\mathbb {R}}^d)}\right) ^{\frac{1}{2}}}\nonumber \\ \end{aligned}$$
(A.2)

where \(x^\epsilon \in \Omega \) is any point such that

$$\begin{aligned} u^{\epsilon }(x):=\sup _{y\in {\mathbb {R}}^d}\left\{ u(y)-\frac{|y-x|^2}{2\epsilon } \right\} =u(x^\epsilon )-\frac{|x^\epsilon -x|^2}{2\epsilon }. \end{aligned}$$
(A.3)

Proof

Suppose that x is any point in \(\Omega _{2\left( \epsilon \Vert u\Vert _{L^\infty ({\mathbb {R}}^d)}\right) ^{\frac{1}{2}}}\) at which \(u^\epsilon \) has the taylor expansion up to second order. For each \(\delta >0\), there exists \(\varphi _\delta \in C_b^2({\mathbb {R}}^d)\) such that \(\varphi _\delta \) touches \(u^\epsilon \) from above at x,

$$\begin{aligned} \varphi _\delta (y)= & {} u^\epsilon (x)+Du^\epsilon (x)\cdot (y-x)+\frac{1}{2}\left( D^2u^\epsilon (x)+\delta I\right) (y-x)\cdot (y-x)\\&+o(|x-y|^2)\quad \text {a.e. }x\in {\mathbb {R}}^d \end{aligned}$$

and \(\varphi _\delta \rightarrow u^\epsilon \) as \(\delta \rightarrow 0\) a.e. in \({\mathbb {R}}^d\). Let \(x^\epsilon \) be the one in (A.3). It is standard to obtain that \(x^\epsilon \in \Omega \) and u is touched from above at \(x^\epsilon \) by \(\varphi _\delta (\cdot -x^\epsilon +x)\). Therefore

$$\begin{aligned}&-{\mathcal {P}}^+\left( D^2\varphi _\delta (\cdot -x^\epsilon +x)\right) (x^\epsilon ) -{\mathcal {P}}_{K}^+\left( \varphi _\delta (\cdot -x^\epsilon +x)\right) (x^\epsilon )\nonumber \\&\quad -C_0|D\varphi _\delta (\cdot -x^\epsilon +x)(x)|\le f(x^\epsilon ). \end{aligned}$$
(A.4)

(A.2) follows from letting \(\delta \rightarrow 0\) in (A.4). \(\square \)

Theorem A.4

Let \(\Omega \) be a bounded domain in \({\mathbb {R}}^d\) and \(f\in L^d(\Omega )\cap C(\Omega )\). Then there exists a constant C such that, if u solves (A.1) in the viscosity sense, then

$$\begin{aligned} \sup _{\Omega } u\le \sup _{\Omega ^c}u+C\mathrm{diam}(\Omega )\Vert f^+\Vert _{L^d(\Gamma _\Omega ^{n,+}(u^+))}. \end{aligned}$$
(A.5)

Proof

By Theorem 3.1 in [38], we know that (A.5) holds if \(u\in C^2(\Omega )\cap C_b({\mathbb {R}}^d)\). Using Lemma A.3, \(u^\epsilon \) satisfies

$$\begin{aligned} -{\mathcal {P}}^+(D^2u^{\epsilon })(x)-{\mathcal {P}}_{K}^+(u^\epsilon )(x)-C_0|Du^\epsilon (x)|\le f_\epsilon (x),\quad \text {a.e in }\Omega _{2\left( \epsilon \Vert u\Vert _{L^\infty ({\mathbb {R}}^d)}\right) ^{\frac{1}{2}}} \end{aligned}$$

where

$$\begin{aligned} f_\epsilon (x)=\sup _{B_{2\left( \epsilon \Vert u\Vert _{L^\infty ({\mathbb {R}}^d)} \right) ^{\frac{1}{2}}}(x)}f(y). \end{aligned}$$

Because \(u^\epsilon \rightarrow u\) as \(\epsilon \rightarrow 0\) uniformly in any compact set of \({\mathbb {R}}^d\), if \(r<r_0(u)\) and \(\epsilon \) is sufficiently small where

$$\begin{aligned} r_0(u):=\frac{\sup _\Omega u-\sup _{\Omega ^c}u}{2d}, \end{aligned}$$

then \(r<r_0(u^\epsilon )\) and \(\Gamma _{\Omega ,r}^{n,+}(u^\epsilon )\) remains in a fixed compact subset of \(\Omega \). Let \(u_\delta ^\epsilon \) be a standard mollification of \(u^\epsilon \). It follows from the proof of Theorem 3.1 in [38], for \(\kappa \ge 0\) and small \(\delta \), we have

$$\begin{aligned} \int _{B_r}\left( |p|^{\frac{d}{d-1}}+\kappa ^{\frac{d}{d-1}}\right) ^{1-d}dp\le \int _{\Gamma _{\Omega ,r}^{n,+}(u_\delta ^\epsilon )}\left( |Du_\delta ^\epsilon |^{\frac{d}{d-1}}+\kappa ^{\frac{d}{d-1}}\right) ^{1-d}\left( \frac{-\mathrm{Tr}(D^2u_\delta ^\epsilon )}{d}\right) ^ddx.\nonumber \\ \end{aligned}$$
(A.6)

Since \(-\frac{1}{\epsilon }I\le D^2u_\delta ^\epsilon \le 0\) in \(\Gamma _{\Omega ,r}^{n,+}(u_\delta ^\epsilon )\), the bounded convergence theorem combining with Lemma A.1, Lemma A.2(iv) implies (A.6) holds with \(u^\epsilon \) in place of \(u_\delta ^\epsilon \) by taking \(\delta \rightarrow 0\). Then the arguments in Theorem 3.1 in [38] remain unchanged to obtain

$$\begin{aligned} r\le & {} \left( \mathrm{exp}\left( \frac{2^{d-2}}{|B_1|d^{d}}\left( 1+\int _{\Gamma _{\Omega ,r}^{n,+}(u^\epsilon )}\frac{[\gamma +C_2(1+\mathrm{diam}(\Omega )^{-1})]^d}{\lambda ^d}dx\right) \right) -1\right) ^{\frac{1}{d}}\nonumber \\&\frac{\Vert f_\epsilon ^+\Vert _{L^d(\Gamma _{\Omega ,r}^{n,+}(u^\epsilon ))}}{\lambda } \end{aligned}$$
(A.7)

where \(C_2\ge 0\) depends on \(\mathrm{diam}(\Omega )\) and K. Then the result follows from letting \(\epsilon \rightarrow 0\) in (A.7). \(\square \)

Proof of Theorem 3.4

The result follows from applying Theorem A.4 to \(-u\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mou, C. Existence of \(C^\alpha \) solutions to integro-PDEs. Calc. Var. 58, 143 (2019). https://doi.org/10.1007/s00526-019-1597-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1597-x

Mathematics Subject Classification

Navigation