Skip to main content
Log in

The boundary value problem for Yang–Mills–Higgs fields

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We show the existence of Yang–Mills–Higgs (YMH) fields over a Riemann surface with boundary where a free boundary condition is imposed on the section and a Neumann boundary condition on the connection. In technical terms, we study the convergence and blow-up behavior of a sequence of Sacks–Uhlenbeck type \(\alpha \)-YMH fields as \(\alpha \rightarrow 1\). For \(\alpha >1\), some regularity results for \(\alpha \)-YMH field are shown. This is achieved by showing a regularity theorem for more general coupled systems, which extends the classical results of Ladyzhenskaya–Ural’ceva and Morrey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This technical issue was overlooked by Song in [31] and here we take our opportunity to fix the gap by extending Morrey’s theorem to Theorem B.

  2. In what follows, we always omit the trivial relation that the extended quantity restricting to \(D_\rho \) equals to the original one for simplicity.

  3. It is easy to check, for \((a,b,c)\in \mathrm {I}_1\times \mathrm {I}_1\times \mathrm {I}_1\cup \mathrm {I}_2\times \mathrm {I}_2\times \mathrm {I}_1\cup \mathrm {I}_2\times \mathrm {I}_1\times \mathrm {I}_2\cup \mathrm {I}_1\times \mathrm {I}_2\times \mathrm {I}_2\) and \(x\in D_\rho ^-\), \({\tilde{\Gamma }}_{ab}^c({\tilde{u}}(x))=\Gamma _{ab}^c(u(x^*))\) and \({\tilde{\Gamma }}_{ab}^c({\tilde{u}}(x))=-\Gamma _{ab}^c(u(x^*))\) otherwise.

References

  1. Alvarez-Gaumé, L., Freedman, D.Z.: Geometrical structure and ultraviolet finiteness in the supersymmetric \(\sigma \)-model. Commun. Math. Phys. 80(3), 443–451 (1981)

    Article  MathSciNet  Google Scholar 

  2. Bagger, J., Witten, E.: The gauge invariant supersymmetric nonlinear sigma model. Phys. Lett. B 118(1–3), 103–106 (1982)

    Article  MathSciNet  Google Scholar 

  3. Banfield, D.: Stable pairs and principal bundles. Q. J. Math. 51(4), 417–436 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bethuel, F., Brezis, H.M., Hélein, F., Vortices, G.-L.: Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, Boston (1994)

    Google Scholar 

  5. Bradlow, S.B.: Special metrics and stability for holomorphic bundles with global sections. J. Differ. Geom. 33(1), 169–213 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chapman, S.J., Howison, S.D., Ockendon, J.R.: Macroscopic models for superconductivity. SIAM Rev. 34(4), 529–560 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cieliebak, K., Gaio, A.R., Salamon, D.A.: \(J\)-holomorphic curves, moment maps, and invariants of Hamiltonian group actions. Int. Math. Res. Notices 16, 831–882 (2000)

    MathSciNet  MATH  Google Scholar 

  8. de Gennes, P.-G.: Superconductivity of Metals and Alloys, Advanced Book Classics, Advanced Book Program. Perseus Books, New York City (1999)

    Google Scholar 

  9. Donaldson, S.K.: Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles. Proc. Lond. Math. Soc. (3) 50(1), 1–26 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Du, Q., Gunzburger, M.D., Peterson, J.S.: Analysis and approximation of the Ginzburg–Landau model of superconductivity. SIAM Rev. 34(1), 54–81 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fraser, A.M.: On the free boundary variational problem for minimal disks. Commun. Pure Appl. Math. 53(8), 931–971 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gulliver, R., Jost, J.: Harmonic maps which solve a free-boundary problem. J. Reine Angew. Math. 381, 61–89 (1987)

    MathSciNet  MATH  Google Scholar 

  13. Jaffe, A., Taubes, C.: Vortices and Monopoles, Progress in Physics, Structure of Static Gauge Theories. Birkhäuser, Boston (1980)

    MATH  Google Scholar 

  14. Jost, J., Liu, L., Zhu, M.: The qualitative behavior at the free boundary for approximate harmonic maps from surfaces. Math. Ann. 374(1–2), 133–177 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ladyzhenskaya, O.A., Ural’ceva, N.N.: On the smoothness of weak solutions of quasilinear equations in several variables and of variational problems. Commun. Pure Appl. Math. 14, 481–495 (1961)

    Article  MathSciNet  Google Scholar 

  16. Ladyzhenskaya, O.A., Ural’ceva, N.N.: Linear and Quasilinear Elliptic Equations, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York (1968)

  17. Lieb, E.H., Loss, M.: Analysis, Second, Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001)

    Google Scholar 

  18. Lin, A., Shen, L.: Gradient Flow of the Norm Squared of a Moment Map Over Kahler Manifolds. ArXiv e-prints (2018). arXiv:1802.09314 [math.DG]

  19. Lin, F., Yang, Y.: Gauged harmonic maps, Born–Infeld electromagnetism, and magnetic vortices. Commun. Pure Appl. Math. 56(11), 1631–1665 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lu, K., Pan, X.-B.: Ginzburg–Landau equation with DeGennes boundary condition. J. Differ. Equ. 129(1), 136–165 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ma, L.: Harmonic map heat flow with free boundary. Comment. Math. Helv. 66(2), 279–301 (1991)

    MathSciNet  MATH  Google Scholar 

  22. Marini, A.: Dirichlet and Neumann boundary value problems for Yang–Mills connections. Commun. Pure Appl. Math. 45(8), 1015–1050 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Moore, J.D., Schlafly, R.: On equivariant isometric embeddings. Math. Z. 173(2), 119–133 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. Morrey, C.B., Jr.: Multiple Integrals in the Calculus of Variations, Classics in Mathematics. Springer, Berlin (2008) (Reprint of the 1966 edition)

    Book  MATH  Google Scholar 

  25. Mundet i Riera, I.: A Hitchin–Kobayashi correspondence for Kähler fibrations. J. Reine Angew. Math. 528, 41–80 (2000)

    MathSciNet  MATH  Google Scholar 

  26. Mundet iRiera, I.: Hamiltonian Gromov–Witten invariants. Topology 42(3), 525–553 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nagy, Á.: Irreducible Ginzburg–Landau fields in dimension 2. J. Geom. Anal. 28(2), 1853–1868 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of \(2\)-spheres. Ann. Math. (2) 113(1), 1–24 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  29. Scheven, C.: Partial regularity for stationary harmonic maps at a free boundary. Math. Z. 253(1), 135–157 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sharp, B., Zhu, M.: Regularity at the free boundary for Dirac-harmonic maps from surfaces. Calc. Var. Partial Differ. Equ. 55(2), 27 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Song, C.: Critical points of Yang–Mills–Higgs functional. Commun. Contemp. Math. 13(3), 463–486 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Song, C.: Convergence of Yang–Mills–Higgs fields. Math. Ann. 366(1–2), 167–217 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Song, C., Wang, C.: Heat flow of Yang–Mills–Higgs functionals in dimension two. J. Funct. Anal. 272(11), 4709–4751 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Taubes, C.H.: The existence of a nonminimal solution to the \({\rm SU}(2)\) Yang–Mills–Higgs equations on \({ R}^{3}\). I. Commun. Math. Phys. 86(2), 257–298 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  35. Taubes, C.H.: The existence of a nonminimal solution to the \({\rm SU}(2)\) Yang–Mills–Higgs equations on \({ R}^{3}\). II. Commun. Math. Phys. 86(3), 299–320 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  36. Uhlenbeck, K., Yau, S.-T.: On the existence of Hermitian–Yang–Mills connections in stable vector bundles. Commun. Pure Appl. Math. 39(S, suppl), S257–S293 (1986). [Frontiers of the mathematical sciences: 1985 (New York, 1985)]

    Article  MathSciNet  MATH  Google Scholar 

  37. Uhlenbeck, K.K.: Connections with \(L^{p}\) bounds on curvature. Commun. Math. Phys. 83(1), 31–42 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  38. Urakawa, H.: Calculus of variations and harmonic maps. Translations of Mathematical Monographs, Vol. 132. American Mathematical Society, Providence (1993) (Translated from the 1990 Japanese original by the author)

  39. Venugopalan, S.: Yang–Mills heat flow on gauged holomorphic maps. J. Symplectic Geom. 14(3), 903–981 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wehrheim, K.: Uhlenbeck Compactness, EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), Zürich (2004)

    Book  Google Scholar 

  41. Witten, E.: Phases of \(N=2\) theories in two dimensions. Nucl. Phys. B 403(1–2), 159–222 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xu, G.: The moduli space of twisted holomorphic maps with Lagrangian boundary condition: compactness. Adv. Math. 242, 1–49 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yu, Y.: The gradient flow for gauged harmonic map in dimension two II. Calc. Var. Partial Differ. Equ. 50(3–4), 883–924 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhu, M.: Harmonic maps from degenerating Riemann surfaces. Math. Z. 264(1), 63–85 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miaomiao Zhu.

Additional information

Communicated by J. Jost.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Part of this work was carried out when Wanjun Ai was a postdoc at the School of Mathematical Sciences, Shanghai Jiao Tong University and he would like to thank the institution for hospitality and financial support. Chong Song is partially supported by the Fundamental Research Funds for the Central Universities (Grant Nos. 20720170009, 20720180009). Miaomiao Zhu was supported in part by National Natural Science Foundation of China (No. 11601325). We would like to thank the referee for careful comments and helpful suggestions in improving the presentation of the paper.

Appendix A: Some regularity results and estimates

Appendix A: Some regularity results and estimates

It is well-known that for a weakly harmonic map u, the equation of u has anti-symmetric structure \(\Omega \) with \(||\Omega ||_{L^2}\le C||\nabla u ||_{L^2}\) and the following regularity and estimate hold.

Lemma A.1

(see [30, Thm. 1.2]) Suppose \(u\in L_1^2(D_1,{\mathbb {R}}^n)\) is a weak solution of

$$\begin{aligned} {\left\{ \begin{array}{ll} \Delta u+\Omega \cdot \nabla u=f\in L^p(D_1,{\mathbb {R}}^n),&{}x\in D_1\\ \frac{\partial u^a}{\partial \nu }=g^a\in L_{1,\partial }^p(\partial ^0D_1,{\mathbb {R}}^n),&{}x\in \partial ^0D_1,\quad 1\le a\le k\\ u^a=h^a\in L_{2,\partial }^p(\partial ^0D_1,{\mathbb {R}}^n),&{}x\in \partial ^0D_1,\quad k+1\le a\le n, \end{array}\right. } \end{aligned}$$

where \(\Omega \in L^2(D_1,\mathfrak {so}(n)\times \wedge ^1{\mathbb {R}}^2)\), \(1<p<2\) and boundary Sobolev space is defined as

$$\begin{aligned} L_{k,\partial }^p(\partial ^0D_1):=\left\{ f\in L^1(\partial ^0D_1):f={\tilde{f}}|_{\partial ^0D_1},\,{\tilde{f}}\in L_k^p(D_1) \right\} \end{aligned}$$

with norm

$$\begin{aligned} ||f ||_{L_{k,\partial }^p(\partial ^0D_1)}:=\inf _{{\tilde{f}}\in L_k^p(D_1),{\tilde{f}}|_{\partial ^0D_1}=f}||{\tilde{f}} ||_{L_k^p(D_1)}. \end{aligned}$$

Then, \(u\in L_2^p(\overline{D_{1/2}},{\mathbb {R}}^n)\) and

$$\begin{aligned} ||u ||_{L_2^p(D_{1/2},{\mathbb {R}}^n)}\le C\left( ||f ||_{L^p(D_1,{\mathbb {R}}^n)}+||g ||_{L_{1,\partial }^p(\partial ^0D_1,{\mathbb {R}}^n)}+ ||h ||_{L_{2,\partial }^p(\partial ^0D_1,{\mathbb {R}}^n)}+||u ||_{L^1(D_1,{\mathbb {R}}^n)}\right) , \end{aligned}$$

provided that \(||\Omega ||_{L^2(D_1)}\le \eta _0=\eta _0(p,n)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, W., Song, C. & Zhu, M. The boundary value problem for Yang–Mills–Higgs fields. Calc. Var. 58, 157 (2019). https://doi.org/10.1007/s00526-019-1587-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1587-z

Keywords

Mathematics Subject Classification

Navigation