Skip to main content
Log in

Existence and uniqueness of solutions for Choquard equation involving Hardy–Littlewood–Sobolev critical exponent

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we first prove that each positive solution of

$$\begin{aligned} -\Delta u=\big (I_{\alpha }*|u|^{2_{\alpha }^{*}}\big )|u|^{2_{\alpha }^*-2}u, \quad u\in \mathcal {D}^{1,2}({\mathbb {R}}^{N}) \end{aligned}$$

is radially symmetric, monotone decreasing about some point and has the form

$$\begin{aligned} c_\alpha \left( \frac{t}{t^2+|x-x_0|^2}\right) ^{\frac{N-2}{2}}, \end{aligned}$$

where \(0<\alpha <N\) if \(N=3\) or 4, and \(N-4\le \alpha <N\) if \(N\ge 5\), \({2_{\alpha }^{*}}:=\frac{N+\alpha }{N-2}\) is the upper Hardy–Littlewood–Sobolev critical exponent, \(t>0\) is a constant and \(c_\alpha >0\) depends only on \(\alpha \) and N. Based on this uniqueness result, we then study the following nonlinear Choquard equation

$$\begin{aligned} -\Delta u+V(x)u=\left( I_{\alpha }*|u|^{2_{\alpha }^{*}}\right) |u|^{2_{\alpha }^*-2}u, \quad u\in \mathcal {D}^{1,2}({\mathbb {R}}^{N}). \end{aligned}$$

By using Lions’ Concentration-Compactness Principle, we obtain a global compactness result, i.e. we give a complete description for the Palais–Smale sequences of the corresponding energy functional. Adopting this description, we are succeed in proving the existence of at least one positive solution if \(\Vert V(x)\Vert _{L^\frac{N}{2}}\) is suitable small. This result generalizes the result for semilinear Schrödinger equation by Benci and Cerami (J Funct Anal 88:90–117, 1990) to Choquard equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov, A.D.: Uniqueness theorems for surfaces in the large V. Am. Math. Soc. Transl. 2(21), 412–416 (1962)

    MathSciNet  Google Scholar 

  2. Alves, C.O., Nóbrega, A.B., Yang, M.: Multi-bump solutions for Choquard equation with deepening potential well. Calc. Var. Partial Differ. Equ. 55(3), 48 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benci, V., Cerami, G.: Existence of positive solutions of the equation \(-\Delta u+a(x)u=u^{(N+2)/(N-2)}\) in \(\mathbb{R}^N\). J. Funct. Anal. 88(1), 90–117 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brézis, H., Kato, T.: Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures Appl. 58(9), 137–151 (1979)

    MathSciNet  MATH  Google Scholar 

  5. Caffarelli, L., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl. Math. 42(3), 271–297 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cazenave, T.: An Introduction to Semilinear Elliptic Equations. Editora Do Instituto De Matemática, Rio de Janeiro (2006)

    Google Scholar 

  7. Chang, S.-Y.A., Yang, P.C.: On uniqueness of solutions of \(n\)-th order differential equations in conformal geometry. Math. Res. Lett. 4(1), 91–102 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, W., Li, C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63(3), 615–622 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, W., Li, C.: A priori estimates for prescribing scalar curvature equations. Ann. Math. (2) 145(3), 547–564 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, W., Li, C., Ou, B.: Classification of solutions for a system of integral equations. Commun. Partial Differ. Equ. 30(1–3), 59–65 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, W., Li, C., Ou, B.: Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59(3), 330–343 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, F., Yang, M.: On the Brézis–Nirenberg type critical problem for nonlinear Choquard equation. Sci. China Math. 61(7), 1219–1242 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ghimenti, M., Van Schaftingen, J.: Nodal solutions for the Choquard equation. J. Funct. Anal. 271(1), 107–135 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \(\mathbb{R}^N\). Adv. Math. Suppl. Stud. A 7, 369–402 (1981)

    MATH  MathSciNet  Google Scholar 

  15. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (2001)

    MATH  Google Scholar 

  16. Lenzmann, E.: Uniqueness of ground states for pseudorelativistic Hartree equations. Anal. PDE 2(1), 1–27 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, C.: Local asymptotic symmetry of singular solutions to noninear elliptic equations. Invent. Math. 123(3), 221–231 (1996)

    Article  MathSciNet  Google Scholar 

  18. Li, Y.Y.: Remark on some conformally invariant integral equations: the method of moving spheres. J. Eur. Math. Soc. 2(2), 153–180 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, Y.Y., Zhang, L.: Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations. J. Anal. Math. 90(1), 27–87 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, Y.Y., Zhu, M.: Uniqueness theorems through the method of moving spheres. Duke Math. J. 80(2), 383–417 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lieb, E.H.: Existence and uniqueness of the minimization solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57(2), 93–105 (1976/1977)

  22. Lieb, E.H.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. (2) 118(2), 349–374 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics. AMS, Providence (2001)

    Google Scholar 

  24. Lieb, E.H., Simon, B.: The Hartree–Fock theory for Coulomb systems. Commun. Math. Phys. 53(3), 185–194 (1977)

    Article  MathSciNet  Google Scholar 

  25. Lions, P.-L.: The Choquard equation and related questions. Nonlinear Anal. 4(6), 1063–1072 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lions, P.-L.: The concentration-compactness principle in the calculus of variations, the limit case I. Rev. Mat. Iberoam. 1(1), 145–201 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lions, P.-L.: The concentration-compactness principle in the calculus of variations, the limit case II. Rev. Mat. Iberoam. 1(2), 45–121 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195(2), 455–467 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Miao, C., Wu, Y., Xu, G.: Dynamics for the focusing, energy-critical nonlinear Hartree equation. Forum Math. 27(1), 373–447 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Moroz, I.M., Penrose, R., Tod, P.: Spherically-symmetric solutions of the Schrödinger–Newton equations. Class. Quantum Gravity 15(9), 2733–2742 (1998)

    Article  MATH  Google Scholar 

  31. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265(2), 153–184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: Hardy–Littlewood–Sobolev critical exponent. Commun. Contemp. Math. 17(5), 1550005 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pekar, S.: Untersuchung über die Elektronentheorie der Kristalle. Akademie Verlag, Berlin (1954)

    MATH  Google Scholar 

  34. Riesz, M.: L’intégrale de Riemann–Liouville et le problème de Cauchy. Acta Math. 81, 1–223 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  35. Serrin, J.: A symmetry problem in potential theory. Arch. Ration. Mech. Anal. 43(4), 304–318 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  36. Struwe, M.: A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187(4), 511–517 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wei, J., Winter, M.: Strongly interacting bumps for the Schrödinger–Newton equations. J. Math. Phys. 50(1), 012905 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wei, J., Xu, X.: Classification of solutions of higher order conformally invariant equations. Math. Ann. 313(2), 207–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Weth, T.: Energy bounds for entire nodal solutions of autonomous superlinear equations. Calc. Var. Partial Differ. Equ. 27(4), 421–437 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Willem, M.: Minimax Theorems. Birkhäuser, Basel (1996)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for carefully reading this paper and making valuable comments and suggestions. This research was partially supported by the NSFC (Nos. 11831009, 11701203), the program for Changjiang Scholars and Innovative Research Team in University No. IRT_17R46 and CCNU18CXTD04. Hu is also supported by the Project funded by China Postdoctoral Science Foundation (No. 2018M643389). Shuai is also supported by the NSF of Hubei Province (No. 2018CFB268).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Shuai.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Hu, T., Peng, S. et al. Existence and uniqueness of solutions for Choquard equation involving Hardy–Littlewood–Sobolev critical exponent. Calc. Var. 58, 128 (2019). https://doi.org/10.1007/s00526-019-1585-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1585-1

Mathematics Subject Classification

Navigation