Skip to main content
Log in

Existence of strong solutions to the Dirichlet problem for the Griffith energy

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we continue the study of the Griffith brittle fracture energy minimisation under Dirichlet boundary conditions, suggested by Francfort and Marigo (J Mech Phys Solids 46:1319–1342, 1998). In a recent paper (Chambolle and Crismale in J Eur Math Soc (JEMS), 2018) we proved the existence of weak minimisers of the problem. Now we show that these minimisers are indeed strong solutions, namely their jump set is closed and they are smooth away from the jump set and continuous up to the Dirichlet boundary. This is obtained by extending up to the boundary the recent regularity results of Conti et al. (Ann Inst H Poincaré Anal Non Linéaire 36:455–474, 2019) and Chambolle et al. (J Math Pures Appl, 2019. https://doi.org/10.1016/j.matpur.2019.02.001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Later we consider \(g_h\) with \(\mathrm {Lip}(g_h)\) vanishing

References

  1. Ambrosio, L.: A compactness theorem for a new class of functions of bounded variation. Boll. Un. Mat. Ital. B 7(3), 857–881 (1989)

    MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L.: Existence theory for a new class of variational problems. Arch. Ration. Mech. Anal. 111, 291–322 (1990)

    Article  MathSciNet  Google Scholar 

  3. Ambrosio, L.: A new proof of the SBV compactness theorem. Calc. Var. Partial Differ. Equ. 3, 127–137 (1995)

    Article  MathSciNet  Google Scholar 

  4. Ambrosio, L., Coscia, A., Dal Maso, G.: Fine properties of functions with bounded deformation. Arch. Ration. Mech. Anal. 139, 201–238 (1997)

    Article  MathSciNet  Google Scholar 

  5. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000)

    MATH  Google Scholar 

  6. Babadjian, J.-F.: Traces of functions of bounded deformation. Indiana Univ. Math. J. 64, 1271–1290 (2015)

    Article  MathSciNet  Google Scholar 

  7. Babadjian, J.-F., Giacomini, A.: Existence of strong solutions for quasi-static evolution in brittle fracture. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13, 925–974 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Bellettini, G., Coscia, A., Dal Maso, G.: Compactness and lower semicontinuity properties in \({{\rm SBD}}(\Omega )\). Math. Z. 228, 337–351 (1998)

    Article  MathSciNet  Google Scholar 

  9. Campanato, S.: Proprietà di hölderianità di alcune classi di funzioni. Ann. Scuola Norm. Sup. Pisa 3(17), 175–188 (1963)

    MATH  Google Scholar 

  10. Chambolle, A.: A density result in two-dimensional linearized elasticity, and applications. Arch. Ration. Mech. Anal. 167, 211–233 (2003)

    Article  MathSciNet  Google Scholar 

  11. Chambolle, A.: An approximation result for special functions with bounded deformation. J. Math. Pures Appl. 9(83), 929–954 (2004)

    Article  MathSciNet  Google Scholar 

  12. Chambolle, A., Conti, S., Francfort, G.A.: Korn–Poincaré inequalities for functions with a small jump set. Indiana Univ. Math. J. 65, 1373–1399 (2016)

    Article  MathSciNet  Google Scholar 

  13. Chambolle, A., Conti, S., Francfort, G.A.: Approximation of a brittle fracture energy with a constraint of non-interpenetration. Arch. Ration. Mech. Anal. 228, 867–889 (2018)

    Article  MathSciNet  Google Scholar 

  14. Chambolle, A., Conti, S., Iurlano, F.: Approximation of functions with small jump sets and existence of strong minimizers of Griffith’s energy. To appear on J. Math. Pures Appl. https://doi.org/10.1016/j.matpur.2019.02.001

    Article  MathSciNet  Google Scholar 

  15. Chambolle, A., Crismale, V.: A density result in \({{\rm GSBD}}^p\) with applications to the approximation of brittle fracture energies. Arch. Ration. Mech. Anal. 232, 1329–1378 (2019)

    Article  MathSciNet  Google Scholar 

  16. Chambolle, A., Crismale, V.: Compactness and lower semicontinuity in GSBD, To appear on J. Eur. Math. Soc. (JEMS), Preprint arXiv:1802.03302 (2018)

  17. Conti, S., Focardi, M., Iurlano, F.: A note on the Hausdorff dimension of the singular set of solutions to elasticity type systems. To appear on Commun. Contemp. Math., https://doi.org/10.1142/S0219199719500263

  18. Conti, S., Focardi, M., Iurlano, F.: Approximation of fracture energies with \(p\)-growth via piecewise affine finite elements. ESAIM Control Optim. Calc. Var. (2018). https://doi.org/10.1051/cocv/2018021

    Article  Google Scholar 

  19. Conti, S., Focardi, M., Iurlano, F.: Existence of strong minimizers for the Griffith static fracture model in dimension two. Ann. Inst. H. Poincaré Anal. Non Linéaire 36, 455–474 (2019)

    Article  MathSciNet  Google Scholar 

  20. Crismale, V.: On the approximation of SBD functions and some applications, Preprint arXiv:1806.03076 (2018)

  21. Dal Maso, G.: Generalised functions of bounded deformation. J. Eur. Math. Soc. (JEMS) 15, 1943–1997 (2013)

    Article  MathSciNet  Google Scholar 

  22. Dal Maso, G., Francfort, G.A., Toader, R.: Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal. 176, 165–225 (2005)

    Article  MathSciNet  Google Scholar 

  23. Dal Maso, G., Lazzaroni, G.: Quasistatic crack growth in finite elasticity with non-interpenetration. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 257–290 (2010)

    Article  MathSciNet  Google Scholar 

  24. Dal Maso, G., Morel, J.-M., Solimini, S.: A variational method in image segmentation: existence and approximation results. Acta Math. 168, 89–151 (1992)

    Article  MathSciNet  Google Scholar 

  25. Dal Maso, G., Toader, R.: A model for the quasi-static growth of brittle fractures: existence and approximation results. Arch. Ration. Mech. Anal. 162, 101–135 (2002)

    Article  MathSciNet  Google Scholar 

  26. David, G.: Singular Sets of Minimizers for the Mumford–Shah Functional, vol. 233 of Progress in Mathematics, Birkhäuser Verlag, Basel (2005)

  27. De Giorgi, E., Carriero, M., Leaci, A.: Existence theorem for a minimum problem with free discontinuity set. Arch. Ration. Mech. Anal. 108, 195–218 (1989)

    Article  MathSciNet  Google Scholar 

  28. Fonseca, I., Fusco, N.: Regularity results for anisotropic image segmentation models. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24, 463–499 (1997)

    MathSciNet  MATH  Google Scholar 

  29. Francfort, G.A., Larsen, C.J.: Existence and convergence for quasi-static evolution in brittle fracture. Commun. Pure Appl. Math. 56, 1465–1500 (2003)

    Article  MathSciNet  Google Scholar 

  30. Francfort, G.A., Marigo, J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342 (1998)

    Article  MathSciNet  Google Scholar 

  31. Friedrich, M.: A compactness result in \(GSBV^p\) and applications to \(\Gamma \)-convergence for free discontinuity problems. To appear on Calc. Var. Partial Differ. Equ., Preprint arXiv:1807.03647 (2018)

  32. Friedrich, M.: A derivation of linearized Griffith energies from nonlinear models. Arch. Ration. Mech. Anal. 225, 425–467 (2017)

    Article  MathSciNet  Google Scholar 

  33. Friedrich, M.: A piecewise Korn inequality in SBD and applications to embedding and density results. SIAM J. Math. Anal. 50, 3842–3918 (2018)

    Article  MathSciNet  Google Scholar 

  34. Friedrich, M., Solombrino, F.: Quasistatic crack growth in 2d-linearized elasticity. Ann. Inst. H. Poincaré Anal. Non Linéaire 35, 27–64 (2018)

    Article  MathSciNet  Google Scholar 

  35. Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A 221, 163–198 (1920)

    Article  Google Scholar 

  36. Iurlano, F.: A density result for GSBD and its application to the approximation of brittle fracture energies. Calc. Var. Partial Differ. Equ. 51, 315–342 (2014)

    Article  MathSciNet  Google Scholar 

  37. Lemenant, A.: A selective review on Mumford–Shah minimizers. Boll. Unione Mat. Ital. 9, 69–113 (2016)

    Article  MathSciNet  Google Scholar 

  38. Maddalena, F., Solimini, S.: Lower semicontinuity properties of functionals with free discontinuities. Arch. Ration. Mech. Anal. 159, 273–294 (2001)

    Article  MathSciNet  Google Scholar 

  39. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  40. Morrey, Jr., C.B.: Multiple Integrals in the Calculus of Variations, Classics in Mathematics, Springer, Berlin, (2008). Reprint of the 1966 edition [MR0202511]

    Book  Google Scholar 

  41. Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco (1985)

  42. Temam, R.: Mathematical Problems in Plasticity. Gauthier-Villars, Paris (1985). Translation of Problèmes mathématiques en plasticité. Gauthier-Villars, Paris (1983)

Download references

Acknowledgements

V. C. has been supported by a public grant as part of the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH, is currently funded by the Marie Skłodowska-Curie Standard European Fellowship No. 793018, and acknowledge the financial support from the Laboratory Ypatia of Mathematical Sciences LYSM and the Labo CMAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonin Chambolle.

Additional information

Communicated by L. Ambrosio.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix we deal with a regularity result for solutions of elliptic equations with Dirichlet boundary conditions. By [39, Theorem 4.18, (i)], the estimate (A.1) below is formally obtained (with the notations in [39], in particular \(\gamma \) represents there the trace operator) by taking \(G_1=B_{3 R_0/4}\), \(G_2=B_{R_0}\), \({\mathcal {P}}u=\mathrm {div\,}{{\mathbb {C}}}e(u)\), \(f=0\), \(\gamma u=0\). However, since the dependence of \(C'_{0,m}\) from the other relevant known constant is not clearly specified in [39], and it is very important for Theorem 2.6 and its consequences, we give an outline of the proof. We refer to the notation of Sect. 2, in particular recall (2.5) and (2.6).

Theorem A.1

Let \(\gamma \in [0, 1/2]\), \(u\in H^1(B_1;{{{\mathbb {R}}}}^n)\) be a local minimiser of \(E_{0,\gamma }(\cdot , B_1)\), and \(R_0<1\) be such that \(\frac{3}{4}R_0 > \gamma \). Then for every \(m\in {{\mathbb {N}}}\) and \(\varrho \le R_0\) there exists \(C_{0,m}'\) depending on \({{\mathbb {C}}}\), m, and \(R_0\), such that

$$\begin{aligned} \Vert u\Vert _{H^m(B_{3R_0/4};{{{\mathbb {R}}}}^n)}\le C'_{0,m} \Vert e(u)\Vert _{L^2(B_{R_0};{{\mathbb {M}}^{n\times n}_{sym}})}. \end{aligned}$$
(A.1)

Proof

First let us prove that for any \(\varrho < R_0\) it holds

$$\begin{aligned} \Vert u\Vert _{H^2(B_\varrho )} \le C_{{{\mathbb {C}}}} (R_0- \varrho )^{-2} \Vert e(u)\Vert _{L^2(B_{R_0})}. \end{aligned}$$
(A.2)

Let us fix \(\varrho < R_0\) and take a cut-off function \(\psi \) between \(B_{\varrho }\) and \(B_{R_0}\), that is \(\psi {:}\,B_1 \rightarrow [0,1]\), \(\psi \in C^\infty _c(B_{R_0})\), \(\psi = 1\) in \(B_{\varrho }\), such that

$$\begin{aligned} \Vert \nabla \psi \Vert ^2_{L^\infty (B_1)} + \Vert \mathrm {D}^2 \psi \Vert _{L^\infty (B_1)} \le C (R_0-\varrho )^{-2}, \end{aligned}$$
(A.3)

for a universal constant C. For any \(w {:}\,B_1 \rightarrow {{\mathbb {R}}}^s\), \(s \ge 1\), and \(x \in B_{1-h}\) we denote

$$\begin{aligned} \nabla _{l,h} w (x) := \frac{w(x+h e_l)- w(x)}{h} \end{aligned}$$

the difference quotient in the direction \(e_l\), where \(e_l\) is the l-th element of the canonical basis of \({{{\mathbb {R}}}}^n\). Since \(\psi u\) has compact support in \(B_{R_0}\) and \({{\mathbb {C}}}\) has constant coefficients (with respect to x) we have that for h small

$$\begin{aligned} \int \limits _{B_{R_0}} {{\mathbb {C}}}\, \nabla _{l,h}(e(\psi u)) {:}\,e(v) \, \mathrm {d} x= - \int \limits _{B_{R_0}} {{\mathbb {C}}}e(\psi u) {:}\,\nabla _{l,-h} (e(v)) \, \mathrm {d} x\end{aligned}$$

for any \(v\in H^1(B_{R_0})\). Then for h small and \(v \in H^1_0(B_{R_0}; {{{\mathbb {R}}}}^n)\), \(v=0\) in \(B_{R_0}{\setminus }H_\gamma \)

$$\begin{aligned}&\bigg | \int \limits _{B_{R_0}} {{\mathbb {C}}}\, \nabla _{l,h}(e(\psi u)) {:}\,e(v) \, \mathrm {d} x\bigg | = \bigg | \int \limits _{B_{R_0}} {{\mathbb {C}}}e(\psi u) {:}\,\nabla _{l,-h} (e(v)) \, \mathrm {d} x\bigg | \nonumber \\&\quad \le \bigg | \int \limits _{B_{R_0}} {{\mathbb {C}}}(\nabla \psi \odot u) {:}\,e(\nabla _{l,-h} v) \, \mathrm {d} x\bigg | = \bigg | \int \limits _{B_{R_0}} {{\mathbb {C}}}\, \nabla _{l,h}(\nabla \psi \odot u) {:}\,e(v) \, \mathrm {d} x\bigg | \nonumber \\&\quad \le C_{{{\mathbb {C}}}} \Big ( \Vert \mathrm {D}^2 \psi \Vert _{L^{\infty }(B_1)} \Vert u\Vert _{L^2(B_{R_0})} + \Vert \nabla \psi \Vert _{L^\infty (B_1)} \Vert e(u)\Vert _{L^2(B_{R_0})} \Big ) \Vert e(v)\Vert _{L^2(B_{R_0})} \nonumber \\&\quad \le C_{{{\mathbb {C}}}} (R_0- \varrho )^{-2} \Vert e(u)\Vert _{L^2(B_{R_0})} \Vert e(v)\Vert _{L^2(B_{R_0})}, \end{aligned}$$
(A.4)

where in the first inequality we have used that \(e(\psi u) = \psi \, e(u) + \nabla \psi \odot u\) and the Euler equation for minimisers of (2.6)

$$\begin{aligned} \int \limits _{B_{R_0}} {{\mathbb {C}}}e(u) {:}\,e(v) \, \mathrm {d} x= 0 \quad \text {for any }v \in H^1_0(B_{R_0}; {{{\mathbb {R}}}}^n),\, v=0\text { in }B_{R_0}{\setminus }H_\gamma , \end{aligned}$$

and the last inequality follows from (A.3) plus Poincaré’s and Korn’s inequality for \(H^1_0\) functions [cf. also below in (A.5)]. We now take, for \(l=1, \dots , n-1\), \(v:= \nabla _{l,h}(\psi u)\) as test function; indeed, by the form of \(H_\gamma \) we have that

$$\begin{aligned} \nabla _{l,h}(\psi u) \in H^1_0(B_{R_0}; {{{\mathbb {R}}}}^n),\quad \nabla _{l,h}(\psi u) =0\text { in }B_{R_0}{\setminus }H_\gamma . \end{aligned}$$

With this choice, we get

$$\begin{aligned} \bigg | \int \limits _{B_{R_0}} {{\mathbb {C}}}\, \nabla _{l,h}(e(\psi u)) {:}\,e(v) \, \mathrm {d} x\bigg | \ge C_{{{\mathbb {C}}}} \Vert e(\nabla _{l,h}(\psi u))\Vert ^2_{L^2(B_{R_0})} \ge C_{{{\mathbb {C}}}} \Vert \nabla _{l,h} u \Vert ^2_{H^1(B_\varrho )}, \end{aligned}$$
(A.5)

since

$$\begin{aligned} \Vert \nabla _{l,h} u \Vert ^2_{H^1(B_\varrho )}=\Vert \nabla _{l,h}(\psi u) \Vert ^2_{H^1(B_{\varrho })} \le C \Vert e(\nabla _{l,h}(\psi u))\Vert ^2_{L^2(B_{\varrho })} \end{aligned}$$

for a universal constant C: this holds by the combination of Korn’s inequality in \(H^1_0(B_{\varrho })\)

$$\begin{aligned} \Vert \nabla \big (\nabla _{l,h}(\psi u) \big ) \Vert ^2_{L^2(B_\varrho )} \le 2 \Vert e(\nabla _{l,h}(\psi u))\Vert ^2_{L^2(B_\varrho )}, \end{aligned}$$

and Poincaré’s inequality in \(H^1_0(B_{\varrho })\)

$$\begin{aligned} \Vert \nabla _{l,h}(\psi u) \Vert ^2_{H^1(B_\varrho )} \le \big (1 + 9 R_0^2 / 16 \big ) \Vert \nabla \big (\nabla _{l,h}(\psi u) \big ) \Vert ^2_{L^2(B_\varrho )}, \end{aligned}$$

being \(\varrho \le \frac{3}{4}R_0\).

As usual, to prove regularity of solutions to elliptic equations, the derivative \(\partial _{n\,n} u\) is estimated by looking at the equation in weak form \(\mathrm {div\,} {{\mathbb {C}}}e(u)=0\), that gives

$$\begin{aligned} \Vert \partial _{n\,n} u\Vert _{L^2(B_\varrho )} \le C_{{{\mathbb {C}}}} \left( \Vert u\Vert _{H^1(B_\varrho )} + \sum _{l=1}^{n-1} \Vert \partial _l u\Vert _{H^1(B_\varrho )} \right) . \end{aligned}$$

Combining the estimate above with (A.4) and (A.5) (and standard properties of difference quotients), we obtain (A.2). Arguing in a similar way it is possible to show that if \(\mathrm {div}\, {{\mathbb {C}}}e(w)=f\) in \(B_{R_0} \cap H_\gamma \) and \(w= 0\) in \(B_{R_0} {\setminus }H_\gamma \), then

$$\begin{aligned} \Vert w\Vert _{H^2(B_\varrho )} \le C_{{{\mathbb {C}}}} (R_0- \varrho )^{-2} \Vert e(w)\Vert _{L^2(B_{R_0})} + C_{{{\mathbb {C}}}} \Vert f\Vert _{L^2(B_{R_0})}. \end{aligned}$$
(A.6)

Now it is proven by induction that

$$\begin{aligned} \Vert u\Vert _{H^{m+1}(B_\varrho )} \le C_{{{\mathbb {C}}}} (R_0- \varrho )^{-2m} \Vert e(u)\Vert _{L^2(B_{R_0})}, \end{aligned}$$
(A.7)

the case \(m=1\) being (A.2). For \(l=1, \dots , n-1\) we have that \(\mathrm {div}\, {{\mathbb {C}}}e(\partial _l u)\) is expressed in terms of derivatives of u of order at most \(m+1\) (cf. [39, Lemma 4.13]) and \(\partial _l u= 0\) in \(B_{R_0} {\setminus }H_\gamma \), so that (A.6) and the induction assumption for m give

$$\begin{aligned} \Vert \partial _l u\Vert _{H^{m+1}(B_\varrho )} \le C_{{{\mathbb {C}}}} (R_0- \varrho )^{-2(m+1)} \Vert e(u)\Vert _{L^2(B_{R_0})}. \end{aligned}$$
(A.8)

It lasts to estimate \(\partial ^{m+2}_n u\), that is the derivative of u taken \(m+2\) times with respect to \(e_n\). In order to do so, it is enough to apply \(\partial ^m_n\) to the explicit expression of \(\partial _{n\,n}\) in terms of the other second order derivatives obtained from \(\mathrm {div\,} {{\mathbb {C}}}e(u)=0\): then \(\partial ^{m+2}_n\) is a linear combination (trough combination of coefficients of \({{\mathbb {C}}}\)) of the other derivatives of order \(m+2\), already estimated in (A.8). We conclude (A.1) by taking \(\varrho = \frac{3}{4} R_0\) in (A.7). \(\square \)

Remark A.2

From Theorem A.1, employing the Sobolev embedding \(H^m \hookrightarrow C^1\) for any \(m> 2 + n/2\) and recalling (1.1), we obtain Theorem 2.6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chambolle, A., Crismale, V. Existence of strong solutions to the Dirichlet problem for the Griffith energy. Calc. Var. 58, 136 (2019). https://doi.org/10.1007/s00526-019-1571-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1571-7

Mathematics Subject Classification

Navigation