Skip to main content
Log in

A Density Result in GSBDp with Applications to the Approximation of Brittle Fracture Energies

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove that any function in \({GSBD^p(\Omega)}\), with \({\Omega}\) a n-dimensional open bounded set with finite perimeter, is approximated by functions \({u_k\in SBV(\Omega; \mathbb{R}^{n})\cap L^\infty(\Omega; \mathbb{R}^{n})}\) whose jump is a finite union of C1 hypersurfaces. The approximation takes place in the sense of Griffith-type energies \({\int_\Omega W(e(u)) {\rm dx} +\mathcal{H}^{n-1}(J_u)}\), e(u) and Ju being the approximate symmetric gradient and the jump set of u, and W a nonnegative function with p-growth, p > 1. The difference between uk and u is small in Lp outside a sequence of sets \({E_k\subset \Omega}\) whose measure tends to 0 and if \({|u|^r \in L^1(\Omega)}\) with \({r\in (0,p]}\), then \({|u_k-u|^r \to 0}\) in \({L^1(\Omega)}\). Moreover, an approximation property for the (truncation of the) amplitude of the jump holds. We apply the density result to deduce \({\Gamma}\)-convergence approximation à la Ambrosio-Tortorelli for Griffith-type energies with either Dirichlet boundary condition or a mild fidelity term, such that minimisers are a priori not even in \({L^1(\Omega; \mathbb{R}^{n})}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Amar, M., De Cicco, V.: A new approximation result for BV-functions. C. R. Math. Acad. Sci. Paris 340, 735–738 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L.: Existence theory for a new class of variational problems. Arch. Ration. Mech. Anal. 111, 291–322 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Coscia, A., Dal Maso, G.: Fine properties of functions with bounded deformation. Arch. Ration. Mech. Anal. 139, 201–238 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000)

    MATH  Google Scholar 

  5. Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps by elliptic functionals via \(\Gamma \)-convergence. Commun. Pure Appl. Math. 43, 999–1036 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambrosio, L., Tortorelli, V.M.: On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B 7(6), 105–123 (1992)

    MathSciNet  MATH  Google Scholar 

  7. Babadjian, J.-F.: Traces of functions of bounded deformation. Indiana Univ. Math. J. 64, 1271–1290 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Babadjian, J.-F., Giacomini, A.: Existence of strong solutions for quasi-static evolution in brittle fracture. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13, 925–974 (2014)

  9. Bellettini, G., Coscia, A., Dal Maso, G.: Compactness and lower semicontinuity properties in \({\rm SBD}(\Omega )\). Math. Z. 228, 337–351 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bourdin, B.: Numerical implementation of the variational formulation for quasi-static brittle fracture. Interfaces Free Bound. 9, 411–430 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bourdin, B., Francfort, G.A., Marigo, J.-J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48, 797–826 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Braides, A., Chiadò Piat, V.: Integral representation results for functionals defined on \({\rm SBV}(\Omega; {\bf R}^m)\). J. Math. Pures Appl. 9(75), 595–626 (1996)

    MATH  Google Scholar 

  13. Braides, A., Conti, S., Garroni, A.: Density of polyhedral partitions. Calc. Var. Partial Differ. Equ. 56, pp. Art. 28, 10. (2017)

  14. Burke, S., Ortner, C., Süli, E.: An adaptive finite element approximation of a generalized Ambrosio-Tortorelli functional. Math. Models Methods Appl. Sci. 23, 1663–1697 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Buttazzo, G.: Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, vol. 207 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989

  16. Cagnetti, F., Toader, R.: Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: a Young measures approach. ESAIM Control Optim. Calc. Var. 17, 1–27 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Caroccia, M., Van Goethem, N.: Damage-driven fracture with low-order potentials: asymptotic behavior and applications (2018). Preprint arXiv:1712.08556

  18. Chambolle, A.: A density result in two-dimensional linearized elasticity, and applications. Arch. Ration. Mech. Anal. 167, 211–233 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chambolle, A.: An approximation result for special functions with bounded deformation. J. Math. Pures Appl. 9(83), 929–954 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chambolle, A.: Addendum to: ``An approximation result for special functions with bounded deformation'' [J. Math. Pures Appl. (9) 83(7), 929–954 (2004). mr2074682]. J. Math. Pures Appl. (9) 84, 137–145. (2005)

  21. Chambolle, A., Conti, S., Francfort, G.: Korn-Poincaré inequalities for functions with a small jump set. Indiana Univ. Math. J. 65, 1373–1399 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chambolle, A., Conti, S., Francfort, G.A.: Approximation of a brittle fracture energy with a constraint of non-interpenetration. Arch. Ration. Mech. Anal. 228, 867–889 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chambolle, A., Conti, S., Iurlano, F.: Approximation of functions with small jump sets and existence of strong minimizers of Griffith's energy (2017). Preprint arXiv:1710.01929 (Accepted for publication on J. Math. Pures Appl)

  24. Chambolle, A., Crismale, V.: Phase-field approximation of some fracture energies of cohesive type. Preprint arXiv:1812.05301

  25. Chambolle, A., Crismale, V.: Existence of strong solutions to the Dirichlet problem for Griffith energy (2018). Preprint arXiv:1811.07147

  26. Chambolle, A., Crismale, V.: A density result in \(GSBD^p\) with applications to the approximation of brittle fracture energies (2018). Preprint arXiv:1802.03302 (to appear on J. Eur. Math. Soc.)

  27. Conti, S., Focardi, M., Iurlano, F.: Which special functions of bounded deformation have bounded variation? Proc. R. Soc. Edinb. Sect. A 148, 33–50 (2018)

  28. Conti, S., Focardi, M., Iurlano, F.: Integral representation for functionals defined on \(SBD^p\) in dimension two. Arch. Ration. Mech. Anal. 223, 1337–1374 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Conti, S., Focardi, M., Iurlano, F.: Existence of strong minimizers for the Griffith static fracture model in dimension two. Ann. Inst. H. Poincaré Anal. Non Linéaire. https://doi.org/10.1016/j.anihpc.2018.06.003 (in press)

  30. Conti, S., Focardi, M., Iurlano, F.: Approximation of fracture energies with \(p\)-growth via piecewise affine finite elements. ESAIM Control Optim. Calc. Var. https://doi.org/10.1051/cocv/2018021 (in press)

  31. Cortesani, G., Toader, R.: A density result in SBV with respect to non-isotropic energies. Nonlinear Anal. 38, 585–604 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Crismale, V.: On the approximation of \(SBD\) functions and some applications (2018). Preprint arXiv:1806.03076

  33. Crismale, V., Lazzaroni, G., Orlando, G.: Cohesive fracture with irreversibility: quasistatic evolution for a model subject to fatigue. Math. Models Methods Appl. Sci. 28, 1371–1412 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Dal Maso, G.: An introduction to \(\Gamma \)-convergence, vol. 8 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston (1993)

  35. Dal Maso, G.: Generalised functions of bounded deformation. J. Eur. Math. Soc. (JEMS) 15, 1943–1997 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Dal Maso, G., Francfort, G.A., Toader, R.: Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal. 176, 165–225 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Dal Maso, G., Lazzaroni, G.: Quasistatic crack growth in finite elasticity with non-interpenetration. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 257–290 (2010)

  38. Dal Maso, G., Toader, R.: A model for the quasi-static growth of brittle fractures: existence and approximation results. Arch. Ration. Mech. Anal. 162, 101–135 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Dal Maso, G., Zanini, C.: Quasi-static crack growth for a cohesive zone model with prescribed crack path. Proc. Roy. Soc. Edinburgh Sect. A 137, 253–279 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. De Giorgi, E., Ambrosio, L.: New functionals in the calculus of variations. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 82, 199–210 (1988)

  41. De Giorgi, E., Carriero, M., Leaci, A.: Existence theorem for a minimum problem with free discontinuity set. Arch. Ration. Mech. Anal. 108, 195–218 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  42. de Philippis, G., Fusco, N., Pratelli, A.: On the approximation of SBV functions. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28, 369–413 (2017)

  43. Dibos, F., Séré, E.: An approximation result for the minimizers of the Mumford-Shah functional. Boll. Un. Mat. Ital. A 7(11), 149–162 (1997)

    MathSciNet  MATH  Google Scholar 

  44. Falconer, K.J.: The Geometry of Fractal Sets. Cambridge Tracts in Mathematics, vol. 85. Cambridge University Press, Cambridge (1986)

  45. Federer, H.: Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, vol. 153. New York Inc., New York, Springer-Verlag (1969)

    Google Scholar 

  46. Focardi, M., Iurlano, F.: Asymptotic analysis of Ambrosio-Tortorelli energies in linearized elasticity. SIAM J. Math. Anal. 46, 2936–2955 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Francfort, G.A., Larsen, C.J.: Existence and convergence for quasi-static evolution in brittle fracture. Comm. Pure Appl. Math. 56, 1465–1500 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. Francfort, G.A., Marigo, J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Friedrich, M.: A derivation of linearized Griffith energies from nonlinear models. Arch. Ration. Mech. Anal. 225, 425–467 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Friedrich, M.: A Piecewise Korn Inequality in SBD and Applications to Embedding and Density Results. SIAM J. Math. Anal. 50, 3842–3918 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  51. Friedrich, M.: A compactness result in \(GSBV^p\) and applications to \(\Gamma \)-convergence for free discontinuity problems (2018). Preprint arXiv:1807.03647

  52. Friedrich, M., Solombrino, F.: Quasistatic crack growth in 2d-linearized elasticity. Ann. Inst. H. Poincaré Anal. Non Linéaire 35, 27–64 (2018)

  53. Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A 221, 163–198 (1920)

  54. Hutchinson, J.W.: A Course on Nonlinear Fracture Mechanics. Technical University of Denmark, Kongens Lyngby, Department of Solid Mechanics (1989)

    Google Scholar 

  55. Iurlano, F.: A density result for GSBD and its application to the approximation of brittle fracture energies. Calc. Var. Partial Differ. Equ. 51, 315–342 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Kohn, R., Temam, R.: Dual spaces of stresses and strains, with applications to Hencky plasticity. Appl. Math. Optim. 10, 1–35 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  57. Lazzaroni, G.: Quasistatic crack growth in finite elasticity with Lipschitz data. Ann. Mat. Pura Appl. 4(190), 165–194 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco (1985)

  59. Negri, M.: A finite element approximation of the Griffith's model in fracture mechanics. Numer. Math. 95, 653–687 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  60. Negri, M.: A non-local approximation of free discontinuity problems in \(SBV\) and \(SBD\). Calc. Var. Partial Differential Equations 25, 33–62 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  61. Nitsche, J.A.: On Korn's second inequality. RAIRO Anal. Numér. 15, 237–248 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  62. Suquet, P.-M.: Sur les équations de la plasticité: existence et régularité des solutions. J. Mécanique 20, 3–39 (1981)

    MathSciNet  MATH  Google Scholar 

  63. Temam, R.: Mathematical Problems in Plasticity, Gauthier-Villars, Paris, 1985. Translation of Problèmes mathématiques en plasticité. Gauthier-Villars, Paris (1983)

  64. Temam, R., Strang, G.: Duality and relaxation in the variational problem of plasticity. J. Mécanique 19, 493–527 (1980)

    MathSciNet  MATH  Google Scholar 

  65. White, B.: The deformation theorem for flat chains. Acta Math. 183, 255–271 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

V. Crismale has been supported by a public grant as part of the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH, and is currently funded by the Marie Skłodowska-Curie Standard European Fellowship No.793018. The authors wish to thank the anonymous referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonin Chambolle.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethical statement

Guarantee the compliance with the Ethics Guidelines of the journal.

Additional information

Communicated by G. Dal Maso

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chambolle, A., Crismale, V. A Density Result in GSBDp with Applications to the Approximation of Brittle Fracture Energies. Arch Rational Mech Anal 232, 1329–1378 (2019). https://doi.org/10.1007/s00205-018-01344-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-01344-7

Navigation