Skip to main content
Log in

An integrable example of gradient flow based on optimal transport of differential forms

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Optimal transport theory has been a powerful tool for the analysis of parabolic equations viewed as gradient flows of volume forms (or, in other words, 0-currents) according to suitable transportation metrics. In this paper, we present an example of gradient flow for closed \((d-1)\)-differential forms, or, more appropriately, to closed 1-currents, which can be identified to divergence-free vector fields, in the Euclidean space \(\mathbb {R}^d\). In spite of its apparent complexity, the resulting very degenerate parabolic system is fully integrable and can be viewed, in a suitable sense, as an Eulerian version of the heat equation for loops in the Euclidean space. We analyze this system in terms of “relative entropy” and “dissipative solutions” and provide global existence and weak–strong uniqueness results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti, G., Marchese, A.: On the differentiability of Lipschitz functions. Geom. Funct. Anal. 26, 1–66 (2016)

    Article  MathSciNet  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich, Birkhäuser, Basel (2008)

  3. Brenier, Y.: Convergence of the Vlasov–Poisson system to the incompressible Euler equations. Commun. Partial Differ. Equ. 25, 737–754 (2000)

    Article  MathSciNet  Google Scholar 

  4. Brenier, Y.: Topology preserving diffusion of divergence-free vector fields. Commun. Math. Phys. 330, 757–770 (2014)

    Article  MathSciNet  Google Scholar 

  5. Brenier, Y., De Lellis, C., Székelyhidi Jr., L.: Weak–strong uniqueness for measure-valued solutions. Commun. Math. Phys. 305, 351–361 (2011)

    Article  MathSciNet  Google Scholar 

  6. Brenier, Y., Duan, X.: From conservative to dissipative systems by quadratic change of time with application to the curve-shortening flow. preprint arXiv:1703.03404

  7. Brenier, Y., Gangbo, W., Savaré, G., Westdickenberg, M.: Sticky particle dynamics with interactions. J. Math. Pures Appl. 9, 577–617 (2013)

    Article  MathSciNet  Google Scholar 

  8. Bresch, D., Gisclon, M., Lacroix-Violet, I.: On Navier–Stokes–Korteweg and Euler–Korteweg systems: application to quantum fluids models. arXiv:1703.09460

  9. Csato, G., Dacorogna, B., Kneuss, O.: The Pullback Equation for Differential Forms. Birkhäuser, Basel (2012)

    Book  Google Scholar 

  10. Dacorogna, B., Gangbo, W.: Transportation of closed differential forms with non-homogeneous convex costs. Calc. Var. 57, 108 (2018). https://doi.org/10.1007/00526-018-1376-0

    Article  MathSciNet  MATH  Google Scholar 

  11. Dacorogna, B., Gangbo, W., Kneuss, O.: Optimal transport of closed differential forms for convex costs. C. R. Math. Acad. Sci. Paris 353, 1099–1104 (2015)

    Article  MathSciNet  Google Scholar 

  12. Dafermos, C.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2000)

    Book  Google Scholar 

  13. Demengel, F., Temam, R.: Convex functions of a measure and applications. Indiana Univ. Math. J. 33, 673–709 (1984)

    Article  MathSciNet  Google Scholar 

  14. Demoulini, S., Stuart, D., Tzavaras, A.: Weak–strong uniqueness of dissipative measure-valued solutions for polyconvex elastodynamics. Arch. Ration. Mech. Anal. 205, 927–961 (2012)

    Article  MathSciNet  Google Scholar 

  15. Evans, L.C., Gangbo, W., Savin, O.: Diffeomorphisms and nonlinear heat flows. SIAM J. Math. Anal. 37, 737–751 (2005)

    Article  MathSciNet  Google Scholar 

  16. Feireisl, E., Novotný, A.: Singular Limits in Thermodynamics of Viscous Fluids. Springer, Berlin (2009)

    Book  Google Scholar 

  17. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29, 1–17 (1998)

    Article  MathSciNet  Google Scholar 

  18. Jüngel, A.: Entropy Methods for Diffusive Partial Differential Equations. Springer, Berlin (2016)

    Book  Google Scholar 

  19. Kwon, Y.-S., Vasseur, A.: Asymptotic limit to a shock for BGK models using relative entropy method. Nonlinearity 28, 531–543 (2015)

    Article  MathSciNet  Google Scholar 

  20. Lattanzio, C., Tzavaras, A.: Relative entropy in diffusive relaxation. SIAM J. Math. Anal. 45, 1563–1584 (2013)

    Article  MathSciNet  Google Scholar 

  21. Lions, P.-L.: Mathematical topics in fluid mechanics, Vol. 1. Incompressible Models, Oxford Lecture Series in Mathematics and its Applications 3 (1996)

  22. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26, 101–174 (2001)

    Article  MathSciNet  Google Scholar 

  23. Rezakhanlou, F.: Optimal Transport Problem and Contact Structures (2015). see https://math.berkeley.edu/rezakhan/42optimalcontact.pdf

  24. Saint-Raymond, L.: Hydrodynamic Limits of the Boltzmann Equation, vol 1971. Lecture Notes in Mathematics. Springer, New York (2009)

  25. Santambrogio, F.: Optimal Transport for Applied Mathematicians. Birkhäuser/Springer, Basel (2015)

    Book  Google Scholar 

  26. Smirnov, S.K.: Decomposition of solenoidal vector charges. St. Petersburg Math. J. 5, 841–867 (1994)

    MathSciNet  Google Scholar 

  27. Villani, C.: Optimal Transport: Old and New, p. 2008. Springer, New York (2008)

    Google Scholar 

  28. Vorotnikov, D.: Global generalized solutions for Maxwell-alpha and Euler-alpha equations. Nonlinearity 25, 309–327 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been partly supported by the ANR contract ISOTACE. The first author is grateful to the Erwin Schrödinger Institute for its hospitality during the first stage of this work. He also thanks the INRIA team MOKAPLAN where the work was partly completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Brenier.

Additional information

Communicated by L. Ambrosio.

Appendix 1: Direct recovery of Eq. (2.1)

Appendix 1: Direct recovery of Eq. (2.1)

Let loop X(ts) be a solution to the heat equation (1.3). For any smooth vector field \(b^*\), the relative entropy

$$\begin{aligned} \mathcal {E}(t) =\int _{\mathbb {R/Z}}\frac{{|\partial _s X(t,s)-b^*(t,X(t,s))|}^2}{2}ds \end{aligned}$$

can be written as

$$\begin{aligned} \mathcal {E}(t)=\int _{\mathbb {R/Z}}\left( \frac{|\partial _s X|^2}{2} -\partial _s X\cdot b^*(t,X) +\frac{|b^*(t,X)|^2}{2}\right) ds=\mathcal {E}_1 (t)+\mathcal {E}_2 (t)+\mathcal {E}_3 (t). \end{aligned}$$

For \(\mathcal {E}_1 (t)=\int |\partial _s X|^2/2\), we have

$$\begin{aligned} \frac{d}{dt}\mathcal {E}_1(t)=\int \partial _s X\cdot \partial _{ts} X =-\int \partial _{ss}X \cdot \partial _t X=-\int |\partial _t X|^2. \end{aligned}$$

(since \(\partial _t X=\partial _{ss} X\)). For any smooth vector field \(v^*\), we have

$$\begin{aligned}&-\int |\partial _t X|^2= \int -|\partial _t X-v^*(t,X)|^2 + |v^*(t,X)|^2-2\partial _t X\cdot v^*(t,X)\\&\quad =\int -|\partial _t X-v^*(t,X)|^2 + |v^*(t,X)|^2-\partial _t X\cdot v^*(t,X)-\partial _{ss} X\cdot v^*(t,X). \end{aligned}$$

In coordinates, we have

$$\begin{aligned}&-\int \partial _{ss} X^i v^*_i(t,X)= \int \partial _s X^i \partial _{j}v^*_i(t,X)\partial _s X^j\\&\quad =\frac{1}{2}\int \big (\partial _s X^i-{b^*}^i(t,X)\big )\big (\partial _s X^j-{b^*}^j(t,X)\big )(\partial _{j}v^*_i + \partial _{i}v^*_j)(t,X)\\&\qquad +\int \partial _sX^i{b^*}^j(t,X)(\partial _{j}v^*_i + \partial _{i}v^*_j)(t,X) - \big ({b^*}^i{b^*}^j\partial _jv^*_i\big )(t,X). \end{aligned}$$

So we have,

$$\begin{aligned} \frac{d}{dt}\mathcal {E}_1(t)= & {} \int -|\partial _t X-v^*(t,X)|^2 + \mathrm {L}'_1(t,X)+\partial _s X\cdot \mathrm {L}'_2(t,X)+ \partial _t X\cdot \mathrm {L}'_3(t,X) \\&+\frac{1}{2}\int \big (\partial _s X^i-{b^*}^i(t,X)\big )\big (\partial _s X^j-{b^*}^j(t,X)\big )(\partial _{j}v^*_i + \partial _{i}v^*_j)(t,X), \end{aligned}$$

where

$$\begin{aligned} \mathrm {L}'_1=|v^*|^2-{b^*}^i{b^*}^j\partial _jv^*_i,\;\;\;(\mathrm {L}'_2)_i=(\partial _{j}v^*_i + \partial _{i}v^*_j){b^*}^j,\;\;\; (\mathrm {L}'_3)_i=-v^*_i . \end{aligned}$$

Now let’s look at \(\mathcal {E}_2(t)=-\int \partial _s X \cdot b^*(t,X)\). In coordinates, we have,

$$\begin{aligned} \frac{d}{dt}\mathcal {E}_2(t)= & {} \int -\partial _{st} X^i \cdot b^*_i(t,X)-\partial _s X^i(\partial _t b^*_i)(t,X)-\partial _s X^i\partial _t X^j (\partial _j b^*_i)(t,X)\\= & {} \int -\partial _s X^i\partial _t X^j(\partial _j b^*_i-\partial _i b^*_j)(t,X) -\partial _s X^i(\partial _t b^*_i)(t,X) \\= & {} -\int \big (\partial _s X^i-{b^*}^i(t,X)\big )\big (\partial _t X^j-{v^*}^j(t,X)\big )(\partial _j b^*_i-\partial _i b^*_j)(t,X)\\&+ \int \mathrm {L}''_1(t,X)+\partial _s X\cdot \mathrm {L}''_2(t,X)+ \partial _t X\cdot \mathrm {L}''_3(t,X), \end{aligned}$$

where

$$\begin{aligned}&\mathrm {L}''_1=(\partial _j b^*_i-\partial _i b^*_j){b^*}^i{v^*}^j,\;\;(\mathrm {L}''_2)_i=-\partial _t b^*_i-(\partial _j b^*_i-\partial _i b^*_j){v^*}^j,\\&(\mathrm {L}''_3)_i=(\partial _j b^*_i-\partial _i b^*_j){b^*}^j. \end{aligned}$$

For the last term \(\mathcal {E}_3(t)=\int |b^*(t,X)|^2/2\), we have,

$$\begin{aligned} \frac{d}{dt}\mathcal {E}_3(t)= \int \big (\partial _t b^*_i(t,X) + \partial _t X^j\partial _j b^*_i(t,X)\big ){b^*}^i(t,X). \end{aligned}$$

So, in summary, we have

$$\begin{aligned}&\frac{d\mathcal {E}}{dt}=\frac{1}{2}\int \big (\partial _s X^i-{b^*}^i(t,X)\big )\big (\partial _s X^j-{b^*}^j(t,X)\big )(\partial _{j}v^*_i + \partial _{i}v^*_j)(t,X)\\&\qquad -\int \big (\partial _s X^i-{b^*}^i(t,X)\big )\big (\partial _t X^j-{v^*}^j(t,X)\big )(\partial _j b^*_i-\partial _i b^*_j)(t,X)\\&\int -|\partial _t X-v^*(t,X)|^2 + \mathrm {L}_1(t,X)+\partial _s X\cdot \mathrm {L}_2(t,X)+ \partial _t X\cdot \mathrm {L}_3(t,X), \end{aligned}$$

where

$$\begin{aligned}&\mathrm {L}_1=\mathrm {L}'_1{+}\mathrm {L}''_1 {+} \partial _t\left( \frac{{b^*}^2}{2}\right) ={v^*}^2+D_t^* \left( \frac{{b^*}^2}{2}\right) -(b^*\cdot \nabla )(b^*\cdot v^*), \;\;D_t^*=(\partial _t+v^*\cdot \nabla )\\&\mathrm {L}_2=\mathrm {L}'_2+\mathrm {L}''_2=-D_t^* b^*+(b^*\cdot \nabla )v^*+\nabla (b^*\cdot v^*)\\&\mathrm {L}_3=\mathrm {L}'_3+\mathrm {L}''_3 + \nabla \left( \frac{{b^*}^2}{2}\right) =-v^*+(b^*\cdot \nabla )b^*. \end{aligned}$$

Since

$$\begin{aligned} \int \partial _s X\cdot \big [\nabla (b^*\cdot v^*)\big ](t,X)=\int \partial _{s}\big (b^*(t,X)\cdot v^*(t,X)\big )=0, \end{aligned}$$

we can remove the gradient term \(\nabla (b^*\cdot v^*)\) from \(\mathrm {L}_2\) and finally get (2.1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brenier, Y., Duan, X. An integrable example of gradient flow based on optimal transport of differential forms. Calc. Var. 57, 125 (2018). https://doi.org/10.1007/s00526-018-1370-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1370-6

Keywords

Mathematics Subject Classification

Navigation