Skip to main content
Log in

Michell trusses in two dimensions as a \(\Gamma \)-limit of optimal design problems in linear elasticity

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We reconsider the minimization of the compliance of a two dimensional elastic body with traction boundary conditions for a given weight. It is well known how to rewrite this optimal design problem as a nonlinear variational problem. We take the limit of vanishing weight by sending a suitable Lagrange multiplier to infinity in the variational formulation. We show that the limit, in the sense of \(\Gamma \)-convergence, is a certain Michell truss problem. This proves a conjecture by Kohn and Allaire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Allaire, G.: Shape Optimization by the Homogenization Method, volume 146 of Applied Mathematical Sciences. Springer, New York (2002)

    Book  Google Scholar 

  2. Allaire, G., Kohn, R.V.: Optimal design for minimum weight and compliance in plane stress using extremal microstructures. Eur. J. Mech. A: Solids 12(6), 839–878 (1993)

    MATH  MathSciNet  Google Scholar 

  3. Ambrosio, L., Dal Maso, G.: On the relaxation in \(BV (\Omega; \mathbb{R}^m)\) of quasi-convex integrals. J. Funct. Anal. 109(1), 76–97 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bendsøe, M.P., Haber, R.B.: The Michell layout problem as a low volume fraction limit of the perforated plate topology optimization problem: an asymptotic study. Struct. Optim. 6(4), 263–267 (1993)

    Article  Google Scholar 

  5. Bouchitté, G.: Optimization of light structures: the vanishing mass conjecture. In: Homogenization, 2001 (Naples), volume 18 of GAKUTO Internat. Ser. Math. Sci. Appl., pp. 131–145. Gakkōtosho, Tokyo (2003)

  6. Bouchitté, G., Fragalà, I., Lucardesi, I., Seppecher, P.: Optimal thin torsion rods and Cheeger sets. SIAM J. Math. Anal. 44(1), 483–512 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bouchitté, G., Fragalà, I., Seppecher, P.: Structural optimization of thin elastic plates: the three dimensional approach. Arch. Ration. Mech. Anal. 202(3), 829–874 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bouchitté, G., Gangbo, W., Seppecher, P.: Michell trusses and lines of principal action. Math. Models Meth. Appl. Sci. 18(09), 1571–1603 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Braides, A., Fonseca, I., Leoni, G.: A-quasiconvexity: relaxation and homogenization. ESAIM: CoCV 5, 539–577 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dacorogna, B.: Quasiconvexity and relaxation of nonconvex problems in the calculus of variations. J. Funct. Anal. 46(1), 102–118 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dacorogna, B.: Direct Methods in the Calculus of Variations, volume 78 of Applied Mathematical Sciences, 2nd edn. Springer, New York (2008)

    Google Scholar 

  12. Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence, vol. 8. Springer, Berlin (2012)

    Google Scholar 

  13. Demengel, F.: Fonctions à hessien borné. Ann. I. Fourier 34(2), 155–190 (1984)

    Article  MATH  Google Scholar 

  14. Demengel, F.: Compactness theorems for spaces of functions with bounded derivatives and applications to limit analysis problems in plasticity. Arch. Ration. Mech. Anal. 105(2), 123–161 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Demengel, F., Rauch, J.: Weak convergence of asymptotically homogeneous functions of measures. Nonlinear Anal.: Theory Methods Appl. 15(1), 1–16 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Figueroa, Elizabeth, Hill, Adam, Iusco, Denise, Ryham, Rolf: Cutting corners in Michell trusses. Port. Math. 69(2), 95–112 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fonseca, I., Müller, S.: Quasi-convex integrands and lower semicontinuity in \(L^1\). SIAM J. Math. Anal. 23(5), 1081–1098 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fonseca, I., Müller, S.: Relaxation of quasiconvex functionals in \(\text{ B }{V}(\Omega,{\mathbf{R}}^p)\) for integrands \(f(x, u,\nabla u)\). Arch. Ration. Mech. Anal. 123(1), 1–49 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fonseca, I., Müller, S.: \({\cal{A}}\)-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30(6), 1355–1390 (1999). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gagliardo, E.: Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in \( n \) variabili. Rendiconti del seminario matematico della universita di Padova 27, 284–305 (1957)

    MATH  MathSciNet  Google Scholar 

  21. Gibiansky, L. V., Cherkaev, A. V.: Design of composite plates of extremal rigidity. In: Topics in the mathematical modelling of composite materials, volume 31 of Progr. Nonlinear Differential Equations Appl., pp. 95–137. Birkhäuser Boston, Boston, MA (1997)

  22. Giusti, E.: Minimal surfaces and functions of bounded variation. Department of Pure Mathematics, Australian National University, Canberra, 1977. With notes by Graham H. Williams, Notes on Pure Mathematics, 10 (1977)

  23. Hemp, W.S.: Optimum Structures. Clarendon Press, Oxford (1973)

    Google Scholar 

  24. Kohn, R.V., Strang, G.: Optimal design and relaxation of variational problems. I, II and III. Comm. Pure Appl. Math., 39, 113–137, 139–182, 353–377, (1986)

  25. Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vol. 1. Springer, Berlin (2012)

    MATH  Google Scholar 

  26. Lurie, K., Cherkaev, A., Fedorov, A.: Regularization of optimal design problems for bars and plates I,II. J. Optim. Th. Appl. 37, 523–543 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  27. Meyers, N.G.: Quasi-convexity and lower semi-continuity of multiple variational integrals of any order. Trans. Am. Math. Soc. 119, 125–149 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  28. Michell, A.G.: The limits of economy of material in frame-structures. Philos. Mag. S. 8, 589–597 (1904)

    Article  MATH  Google Scholar 

  29. Miranda, M.: Comportamento delle successioni convergenti di frontiere minimali. Rendiconti del Seminario Matematico della Università di Padova 38, 238–257 (1967)

    MATH  MathSciNet  Google Scholar 

  30. Murat, F., Tartar, L.: Optimality conditions and homogenization. In: Nonlinear variational problems (Isola d’Elba, 1983), volume 127 of Res. Notes in Math., pp. 1–8. Pitman, Boston, MA (1985)

  31. Rozvany, G.I.: Structural design via optimality criteria: the Prager approach to structural optimization, vol. 8. Springer, Berlin (2012)

    MATH  Google Scholar 

  32. Rozvany, G.I., Ong, T.G., Szeto, W.T., Sandler, R., Olhoff, N., Bendsøe, M.P.: Least-weight design of perforated elastic plates I-II. Int. J. Solids Struct. 23(4), 521–536 and 537–550 (1987)

  33. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions, vol. 30. Princeton University Press, Princeton (2016)

    Google Scholar 

  34. Ziemer, W.P.: Weakly Differentiable Functions, volume 120 of Graduate Texts in Mathematics. Springer, New York (1989)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiner Olbermann.

Additional information

Communicated by L.Ambrosio.

Appendices

Appendix A: Proof of Theorem 3.7

In analogy to the proof of the relaxation leading to 1-quasiconvex integrands, we first need to prove an approximation lemma. This is slightly more complicated here than in the case of 1-quasiconvexity, since we cannot use the approximation by finite elements here, which is possible there (see [10]). Instead, we are going to need Whitney’s extension theorem, that we quote here in a version that can be found in Stein’s book [33]. Let \(\Omega \subset \mathbb {R}^n\). Let the Greek letters \(\alpha ,\beta ,\gamma \in \mathbb {N}_0^n\) denote multiindices. We will write \(|\alpha |=\sum _i\alpha _i\), \(\alpha !=\prod _i\alpha _i!\), and \(\nabla ^\alpha =\partial _1^{\alpha _1}\dots \partial _n^{\alpha _n}\). Furthermore, for \(x\in \mathbb {R}^n\), we write \(x^\alpha =x_1^{\alpha _1}\dots x_n^{\alpha _n}\). We shall say that a function \(f:\Omega \rightarrow \mathbb {R}\) belongs to \( \mathrm {Lip}^{(k,1)}(\Omega )\) if there exists a collection of real-valued functions \(\{f^{(\alpha )}:|\alpha |\le k\}\) and a constant \(M>0\) such that

$$\begin{aligned} f^{(\alpha )}(y)=\sum _{\beta :|\alpha +\beta |\le k}\frac{f^{(\alpha +\beta )}(x)}{\beta !} (x-y)^{\beta } +R_\alpha (x,y) \end{aligned}$$

and

$$\begin{aligned} |f^{(\alpha )}(y)|\le M \text { and } |R_\alpha (x,y)|\le M|x-y|^{k+1-|\alpha |} \end{aligned}$$

for all \(x,y\in \Omega \) and all multiindices \(\alpha \) with \(|\alpha |\le k\). The set \(\mathrm {Lip}^{(k,1)}(\Omega )\) is a normed space, where the norm of f is given by the smallest constant M such that the above relations hold true.

Theorem A.1

(Theorem 4 in Chapter 6 of [33]) Let k be a non-negative integer and let \(\Omega \subset \mathbb {R}^n\) be closed. Then there exists a continuous extension operator \(\mathrm {Lip}^{(k,1)}(\Omega )\rightarrow \mathrm {Lip}^{(k,1)}(\mathbb {R}^n)\). The norm of this mapping has a bound that is independent from \(\Omega \).

For a closed set \(\Gamma \subset \mathbb {R}^n\), let \(d_{\Gamma }\in C^\infty (\mathbb {R}^n;[0,\infty ))\) denote a regularized distance function, that is, a function with the property that there exists a constant \(C>0\) such that

$$\begin{aligned} \begin{aligned} C^{-1}{\text {dist}}(x,\Gamma )&\le d_{\Gamma }(x)\le C{\text {dist}}(x,\Gamma )\quad \text { for all }x\in \mathbb {R}^N.\\ |\nabla ^\alpha d_{\Gamma }(x)|&\le C |d_{\Gamma }(x)|^{1-|\alpha |}\quad \text { for all multiindices } \alpha . \end{aligned} \end{aligned}$$

Such a regularized distance function exists by Theorem 2 of Chapter 6 in [33]. We will use it to construct suitable cutoff functions in Lemma A.2 below. This lemma is a preparation for the approximation lemma, Lemma A.3 below.

Let \( \phi \in C^\infty ([0,\infty ))\) such that \(\phi (t)=0\) for \(t\le \frac{1}{2}\) and \(\phi (t)=1\) for \(t\ge 1\).

Lemma A.2

Let \(p\ge 1\), \(U\subset [0,1]^2\), \((u_\varepsilon )_{\varepsilon >0}\) a sequence in \(W^{2,p}(U)\) that converges strongly to \(u\in W^{2,p}(U)\) for \(\varepsilon \rightarrow 0\), and let

$$\begin{aligned} \Gamma \subset \left( [0,1]\times \{0\}\cup \{0\}\times [0,1]\right) \cap \partial U \end{aligned}$$

be a closed set of positive \(\mathcal {H}^1\) measure, and \(u_0\in W^{2,p}(U)\) such that \(u=u_0\) and \(\nabla u=\nabla u_0\) on \(\Gamma \). Furthermore let

$$\begin{aligned} \tilde{u}_\varepsilon (x)=\phi \left( \frac{d_{\Gamma }(x)}{\varepsilon }\right) u_\varepsilon (x)+\left( 1-\phi \left( \frac{d_{\Gamma }(x)}{\varepsilon }\right) \right) u_0(x). \end{aligned}$$

Then \(\tilde{u}_\varepsilon =u_0\) and \(\nabla \tilde{u}_\varepsilon =\nabla u_0\) on \(\Gamma \), and

$$\begin{aligned} \begin{aligned} \Vert \tilde{u}_\varepsilon - u\Vert _{W^{2,p}(U)}&\rightarrow 0\\ \int _{U\cap \{x:d_\Gamma (x)\le \varepsilon \}}\left( 1+|\nabla ^2 u_\varepsilon |^p+|\nabla u|^p\right) \text {d}x&\rightarrow 0. \end{aligned} \end{aligned}$$

Proof

The first claim is obvious. To show the second claim, it suffices to show that \(\Vert \nabla ^2(\tilde{u}_\varepsilon -u)\Vert _{L^p}\rightarrow 0\), since \(\tilde{u}_\varepsilon -u\) and its gradient vanish on \(\Gamma \). This is a straightforward computation, that estimates the integral over \(|\nabla ^2(\tilde{u}_\varepsilon -u)|^p\) in the “bulk” \(U\cap \{x:d_\Gamma (x)>\varepsilon \}\) and in boundary layer

$$\begin{aligned} U\cap \left\{ x:d_\Gamma (x)\le \varepsilon \right\} \subset (U\cap \{x:x_1<C\varepsilon \})\cup (U\cap \{x:x_2<C\varepsilon \}), \end{aligned}$$

where the constant \(C>0\) is chosen appropriately. The contribution of the bulk vanishes in the limit \(\varepsilon \rightarrow 0\) due to the assumption. Writing \(\tilde{u}_\varepsilon -u\) and its gradient as integrals in \(x_i\)-direction in the set \(U\cap \{x:x_i<C\varepsilon \}\) for \(i=1,2\) and using Fubini’s theorem, the proof that the contribution of the boundary layer vanishes in the limit is a straightforward but lengthy computation that we omit here for the sake of brevity. The third claim is an immediate consequence of the \(L^p\) integrability of \(\nabla ^2 u\) and the strong convergence \(\nabla ^2u_\varepsilon \rightarrow \nabla ^2 u\) in \(L^p\). \(\square \)

Lemma A.3

Let \(\Omega \subset \mathbb {R}^2\) satisfy Definition 2.1, and let \(p\in [1,\infty )\). Furthermore let \(u\in \{u_0\}+W^{2,p}_0(\Omega )\) and \(\delta >0\). Then there exists \(w\in \{u_0\}+W^{2,p}_0(\Omega )\) and \(\Omega _w\subset \Omega \) such that \(\Omega _w\) is the union of mutually disjoint closed cubes, w is piecewise a polynomial of degree k on \(\Omega _w\), and furthermore

$$\begin{aligned} \begin{aligned} \Vert u-w\Vert _{W^{2,p}(\Omega )}&<\delta ,\\ \int _{\Omega \setminus \Omega _w}(1+|\nabla ^2u|^p+|\nabla ^2w|^p)\text {d}x&<\delta . \end{aligned} \end{aligned}$$

Proof

Let \(v:=u-u_0\in W^{2,p}_0(\Omega )\). We may extend \(u_0\) to \(\mathbb {R}^2\) such that

$$\begin{aligned} \begin{aligned} \Vert u_0\Vert _{W^{2,p}(\mathbb {R}^2)}&\lesssim \Vert u_0\Vert _{W^{2,p}(\Omega )}. \end{aligned} \end{aligned}$$

Also, v may be understood as an element of \(W^{2,p}(\mathbb {R}^2)\) by a trivial extension. Let \(\{\Omega _i:i=1,\ldots ,P\}\) be an open cover of \(\overline{\Omega }\), let \(\{\psi _i:i=1,\ldots ,P\}\) be a subordinate partition of unity, and let \(\xi _i:\Omega _i\rightarrow \xi _i(\Omega _i)=:\tilde{\Omega }_i\), \(i=1,\ldots ,P\), be a set of \(C^2\) diffeomorphisms such that \(\xi _i(\Omega \cap \Omega _i)\subset (0,1)^2\) and \(\Gamma _i:=\xi _i(\Omega _i\cap \partial \Omega )\subset [0,1]\times \{0\}\cup \{0\}\times [0,1]\). (Such \(\xi _i\) exist by the assumption on \(\Omega \).)

Let \(\varphi \in C_c^\infty (\mathbb {R}^n)\) with \(\int \varphi \text {d}x =1\), and \(\varphi _\varepsilon =\varepsilon ^{-n}\varphi (\cdot /\varepsilon )\). For every i, we have that

$$\begin{aligned} \Vert (u- (\varphi _\varepsilon * u))\circ \xi _i^{-1}\Vert _{W^{2,p}(\tilde{\Omega }_i)}\rightarrow 0. \end{aligned}$$

By the previous lemma, there exists \(\hat{u}^{(i)}_\varepsilon \in {W^{2,p}(\tilde{\Omega }_i)}\) such that \(\hat{u}^{(i)}_\varepsilon =(\varphi _\varepsilon * u)\circ \xi _i^{-1}\) on \(\tilde{\Omega }_i\cap \{x:d_{\Gamma _i(x)}\ge \varepsilon \}\),

$$\begin{aligned} \hat{u}^{(i)}_\varepsilon = u\circ \xi _i^{-1}, \quad \nabla \hat{u}^{(i)}_\varepsilon = \nabla u\circ \xi _i^{-1} \quad \text { on } [0,1]\times \{0\}\cap \tilde{\Omega }_i, \end{aligned}$$

and additionally,

$$\begin{aligned} \begin{aligned} \Vert \hat{u}^{(i)}_\varepsilon - u\circ \xi _i^{-1}\Vert _{W^{2,p}(U)}&\rightarrow 0\\ \int _{\tilde{\Omega }_i\cap \{x:d_{\Gamma _i(x)}<\varepsilon \}}1+|\nabla ^2 \hat{u}_\varepsilon ^{(i)}|^p+|\nabla u\circ \xi _i^{-1}|^p\text {d}x&\rightarrow 0. \end{aligned} \end{aligned}$$

Setting \(u_\varepsilon ^{(i)}:=\hat{u}^{(i)}_\varepsilon \circ \xi _i\), we obviously have that \(u_\varepsilon ^{(i)}=\varphi _\varepsilon \circ u\) on \(\Omega _i\setminus \xi _i^{-1}(\tilde{\Omega }_i\cap \{x:d_{\Gamma _i(x)}< \varepsilon \})\), and

$$\begin{aligned} \begin{aligned} u^{(i)}_\varepsilon = u, \quad \nabla u^{(i)}_\varepsilon&= \nabla u \quad \text { on } \Omega _i\cap \partial \Omega ,\\ \Vert u^{(i)}_\varepsilon - u\Vert _{W^{2,p}(\Omega _i)}&\rightarrow 0\\ \int _{ \xi _i^{-1}(\tilde{\Omega }_i\cap \{x:d_{\Gamma _i(x)}<\varepsilon \})}1+|\nabla ^2 u_\varepsilon ^{(i)}|^p+|\nabla u|^p\text {d}x&\rightarrow 0. \end{aligned} \end{aligned}$$

Setting

$$\begin{aligned} \begin{aligned} \Omega _\varepsilon&:=\Omega \setminus \bigcup _{i=1}^N \xi _i^{-1}(\tilde{\Omega }_i\cap \{x:d_{\Gamma _i(x)}<\varepsilon \})\\ u_\varepsilon&:=\sum _i \psi _i u_\varepsilon ^{(i)}, \end{aligned} \end{aligned}$$

we have \(u_\varepsilon =\varphi _\varepsilon * u\) on \(\Omega _\varepsilon \) and

$$\begin{aligned} \begin{aligned} u_\varepsilon = u, \quad \nabla u_\varepsilon&= \nabla u \quad \text { on } \partial \Omega ,\\ \Vert u_\varepsilon - u\Vert _{W^{2,p}(\Omega )}&\rightarrow 0\\ \int _{\Omega \setminus \Omega _\varepsilon }1+|\nabla ^2 u_\varepsilon |^p+|\nabla u|^p\text {d}x&\rightarrow 0. \end{aligned} \end{aligned}$$

and hence we may fix \(\varepsilon \) such that

$$\begin{aligned} \begin{aligned} \Vert u_\varepsilon -u\Vert _{W^{k,p}(\Omega )}&<\delta /2\\ \int _{\Omega \setminus \Omega _\varepsilon }(1+ |\nabla ^k u|^p+|\nabla ^k u_\varepsilon |^p)\text {d}x&<\delta /2. \end{aligned} \end{aligned}$$

Note that \(\Omega _\varepsilon \) is closed and \(u_\varepsilon \in C^\infty (\Omega _\varepsilon )\).

Let \(0<h\ll 1\) to be chosen later, and let \(Q_i\), \(i=1,\ldots ,N\) be mutually disjoint closed cubes of sidelength h contained in \(\Omega _\varepsilon \) such that

$$\begin{aligned} \begin{aligned} {\text {dist}}(Q_i,Q_j)&\ge h^{4/3} \quad \text { for all }i,j=1,\ldots ,N, i\ne j\\ {\text {dist}}(\partial \Omega _\varepsilon ,Q_i)&\ge h^{4/3} \quad \text { for all }i=1,\ldots ,N\\ {\mathcal L}^n\left( \Omega _\varepsilon \setminus \bigcup _i Q_i\right)&\le C h^{1/3}. \end{aligned} \end{aligned}$$

This is always possible assuming that h is small enough. Let \(x_i\) denote the midpoint of \(Q_i\). Then we define \(\tilde{u}_\varepsilon \) to be the Taylor polynomial of degree two at \(x_i\) on each \(Q_i\),

$$\begin{aligned} \tilde{u}_\varepsilon (y)= \sum _{|\alpha |\le 2} \nabla ^\alpha u_\varepsilon (x_i) \frac{(y-x_i)^\alpha }{\alpha !}\quad \text { for }y\in Q_i. \end{aligned}$$

Let \(V=(\cup _i Q_i)\cup \partial \Omega _\varepsilon \). We claim that there exists an extension of \(\tilde{u}_\varepsilon \) from V to \(\Omega _\varepsilon \) such that \(\Vert \tilde{u}_\varepsilon \Vert _{W^{2,\infty }(\Omega _\varepsilon )}\lesssim \Vert u_\varepsilon \Vert _{W^{2,\infty }({\Omega _\varepsilon })}\). In order to prove our claim, we invoke Theorem A.1 with \(k=1\). We verify that \(\tilde{u}_\varepsilon \in \mathrm {Lip}^{(1,1)}(V)\): Firstly, we have for all \(y\in V\) and all multiindices \(\alpha \) with \(|\alpha |\le 1\),

$$\begin{aligned} \begin{aligned} |\nabla ^\alpha \tilde{u}_\varepsilon (y)-\nabla ^\alpha u_\varepsilon (y)|\le C h^{2-|\alpha |}, \end{aligned} \end{aligned}$$
(50)

where the constant C depends on \(\Vert u_\varepsilon \Vert _{C^{3}(\Omega _\varepsilon )}\). Furthermore, we have \(u_\varepsilon \in \mathrm {Lip}^{(1,1)}(\Omega _\varepsilon )=C^{1,1}(\Omega _\varepsilon )\), namely there exists a constant \(0<M_1\lesssim \Vert u_\varepsilon \Vert _{C^{1,1}(\Omega _\varepsilon )}\) such that for all \(x,y\in {\Omega _\varepsilon }\) and all multiindices \(\alpha \) with \(|\alpha |\le 1\) we have

$$\begin{aligned} \begin{aligned} \nabla ^\alpha u_\varepsilon (y)&=\sum _{|\alpha +\beta |\le 1}\nabla ^{\alpha +\beta } u_\varepsilon (x)\frac{(y-x)^\beta }{\beta !}+R_\alpha (x,y) \end{aligned} \end{aligned}$$
(51)

with

$$\begin{aligned} |\nabla ^\alpha u_\varepsilon (x)|<M_1,\quad |R_\alpha (x,y)|<M_1|x-y|^{2-|\alpha |}. \end{aligned}$$

Now let \(x,y\in Q_i\). Then we have for all multiindices \(\alpha \) with \(|\alpha |\le 1\),

$$\begin{aligned} \begin{aligned} \nabla ^\alpha \tilde{u}_\varepsilon (y)&=\sum _{|\alpha +\beta |\le 2}\nabla ^\alpha u_\varepsilon (x)\frac{(y-x)^{\beta }}{\beta !}. \end{aligned} \end{aligned}$$
(52)

Next let \(x\in Q_i,y\in Q_j\) with \(i\ne j\), or \(x\in \partial \Omega \), \(y\in Q_i\). In this case, we have \(|x-y|\ge h^{4/3}\). By inserting (50) in (51), we obtain

$$\begin{aligned} \begin{aligned} \nabla ^\alpha \tilde{u}_\varepsilon (y)&= \sum _{|\alpha +\beta |\le 1}\nabla ^{\alpha +\beta }\tilde{u}_\varepsilon (x)\frac{(y-x)^{\beta }}{\beta !}+O\left( h^{3-|\alpha |}\right) + R_\alpha (x,y)\\&= \sum _{|\alpha +\beta |\le 1}\nabla ^{\alpha +\beta }\tilde{u}_\varepsilon (x)\frac{(y-x)^{\beta }}{\beta !}+ \tilde{R}_\alpha (x,y), \end{aligned} \end{aligned}$$
(53)

where we have introduced \(\tilde{R}_\alpha =R_\alpha (x,y)+O(h^{3-|\alpha |})\), which by \(|x-y|\ge h^{4/3}\) implies

$$\begin{aligned} |\tilde{R}_\alpha (x,y)-R_\alpha (x,y)|=O(h^{3-|\alpha |})= o(1)|x-y|^{2-|\alpha |}, \end{aligned}$$

where the last estimate holds since for all multiindices \(\alpha \) with \(|\alpha |\le 1\), we have

$$\begin{aligned} \frac{4}{3}<\frac{3-|\alpha |}{2-|\alpha |}. \end{aligned}$$

Summarizing (52) and (53), we have proved that \(\tilde{u}_\varepsilon \in \mathrm {Lip}^{(1,1)}(V)\), with

$$\begin{aligned} |\nabla ^\alpha \tilde{u}_\varepsilon (x)|<M_2,\quad |\tilde{R}_\alpha (x,y)|<M_2|x-y|^{2-|\alpha |}, \end{aligned}$$

where

$$\begin{aligned} M_2\le M_1+o(1)\lesssim \Vert u_\varepsilon \Vert _{C^{1,1}({\Omega _\varepsilon })}\lesssim \Vert u_\varepsilon \Vert _{W^{2,\infty }({\Omega _\varepsilon })}. \end{aligned}$$

By Theorem A.1, there exists an extension of \(\tilde{u}_\varepsilon \) to \(\mathrm {Lip}^{(1,1)}({\Omega _\varepsilon })\), with

$$\begin{aligned} \Vert \tilde{u}_\varepsilon \Vert _{W^{2,\infty }({\Omega _\varepsilon })}\lesssim \Vert u_\varepsilon \Vert _{W^{2,\infty }({\Omega _\varepsilon })}. \end{aligned}$$

Comparing the extension with \(u_\varepsilon \), we have the estimates

$$\begin{aligned} \begin{aligned} \int _{\Omega _\varepsilon \setminus V}|\nabla ^2 \tilde{u}_\varepsilon -\nabla ^2 u_\varepsilon |^p\text {d}x&\lesssim h^{1/3}\Vert u_\varepsilon \Vert _{W^{2,\infty }(\Omega _\varepsilon )}^p,\\ \int _{V}|\nabla ^2 \tilde{u}_\varepsilon -\nabla ^2 u_\varepsilon |^p\text {d}x&\lesssim {\mathcal L}^2(V)h^p. \end{aligned} \end{aligned}$$
(54)

Choosing h small enough, we have

$$\begin{aligned} \int _{{\Omega _\varepsilon }\setminus V}(1+|\nabla ^k u|^p)\text {d}x<\delta /3, \end{aligned}$$

and \(\Vert \tilde{u}_\varepsilon -u_\varepsilon \Vert _{W^{2,p}(\Omega _\varepsilon )}<\delta /2\). We claim that the function \(w\in W^{2,p}(\Omega )\), defined by

$$\begin{aligned} w(x)={\left\{ \begin{array}{ll}\tilde{u}_\varepsilon &{}\text { if }x\in \Omega _\varepsilon \\ u_\varepsilon &{}\text { else }\end{array}\right. } \end{aligned}$$

satisfies all the properties that are stated in the lemma. Indeed, we have \(w=u_0\) and \(\nabla w=\nabla u_0\) on \(\partial \Omega \), w is a polynomial of degree 2 on on \(\Omega _w:=\cup _i Q_i\), and

$$\begin{aligned} \begin{aligned} \Vert w-u\Vert _{W^{2,p}(\Omega )}&\le \Vert u-u_\varepsilon \Vert _{W^{2,p}(\Omega )}+\Vert u_\varepsilon -\tilde{u}_\varepsilon \Vert _{W^{2,p}(\Omega )}<\delta ,\\ \int _{\Omega \setminus \Omega _w}(1+|\nabla ^2 u|^p+|\nabla ^2 w|^p)\text {d}x&\le 2\delta /3+Ch^{1/3}\Vert u_\varepsilon \Vert _{W^{2,\infty }(\Omega _\varepsilon )}^p<\delta . \end{aligned} \end{aligned}$$

This proves the lemma. \(\square \)

Proof of Theorem 3.7

Let \(u\in u_0+W^{2,p}_0({\Omega })\). By Lemma A.3, there exists \(w\in u_0+W^{2,p}_0({\Omega })\) and \({\Omega }_w\subset {\Omega }\) such that \({\Omega }_w\) is a union of mutually disjoint closed cubes, \({\Omega }_w=\cup _{i=1}^NQ_i\), w is piecewise a polynomial of degree 2 on \({\Omega }_w\), and furthermore

$$\begin{aligned} \begin{aligned} \Vert u-w\Vert _{W^{2,p}({\Omega })}&<\varepsilon /2,\\ \int _{{\Omega }\setminus {\Omega }_w}1+|\nabla ^2 w|^p+|\nabla ^2 u|^p\text {d}x&<\varepsilon /2.\end{aligned} \end{aligned}$$

For \(i \in \{1,\ldots ,N\}\), choose \(\tilde{\xi }_i\in W_0^{2,\infty }([-1/2,1/2]^2;\mathbb {R}^m)\) such that

$$\begin{aligned} \int _{[-1/2,1/2]^2} f(\nabla ^2 w(x_i)+\nabla ^2\tilde{\xi }_i(x))\text {d}x< Q_2f(\nabla ^2 w(x_i))+\frac{\varepsilon }{N{\mathcal L}^2(Q_i)}, \end{aligned}$$

where \(x_i\) denotes the center of the cube \(Q_i\). We identify \(\tilde{\xi }_i\) with its periodic extension to \(\mathbb {R}^2\). Let \(d_i\) denote the sidelength of the cube \(Q_i\), and let \(M_i\in \mathbb {N}\) to be chosen later. We define \(\xi _i\in W^{2,p}_0(Q_i;\mathbb {R}^m)\) by

$$\begin{aligned} \xi _i(x)=\left( \frac{d_i}{M_i}\right) ^{2}\tilde{\xi }_i\left( \frac{M_i(x-x_i)}{d_i}\right) . \end{aligned}$$

Then we have

$$\begin{aligned} \begin{aligned} \int _{Q_i}f(\nabla ^2 w(x_i)+\nabla ^2\xi _i)\text {d}x&={\mathcal L}^2(Q_i)\int _{[0,1]^2} f(\nabla ^2 w(x_i)+\nabla ^2\tilde{\xi }_i(x))\text {d}x\\&< {\mathcal L}^2(Q_i)\,Q_2f(\nabla ^2 w(x_i))+\frac{\varepsilon }{N}\\&= \int _{Q_i}Q_2f(\nabla ^2 w(x))\text {d}x +\frac{\varepsilon }{N}. \end{aligned} \end{aligned}$$

Choosing \(M_i\) large enough, we may assume

$$\begin{aligned} \Vert \xi _i\Vert _{W^{1,p}(Q_i;\mathbb {R}^m)}^p<\frac{(\varepsilon /2)^p}{N}. \end{aligned}$$

Now the function

$$\begin{aligned} v(x)={\left\{ \begin{array}{ll} w+\xi _i&{}\text { on }Q_i\\ w&{}\text { on }{\Omega }\setminus {\Omega }_w\end{array}\right. } \end{aligned}$$

has all the required properties. \(\square \)

Appendix B: Proof of Theorem 3.9

For the convenience of the reader, we repeat the statement. We set

$$\begin{aligned} \bar{G}_\lambda (\sigma ):={\left\{ \begin{array}{ll}2\sqrt{\lambda } \rho ^0(\sigma )-2|\det \sigma | &{} \text { if }\rho ^0(\sigma )\le \sqrt{\lambda }\\ |\sigma |^2+\lambda &{} \text { else,}\end{array}\right. } \end{aligned}$$

and the theorem we want to prove is

Theorem B.1

We have

$$\begin{aligned} Q_2F_\lambda (\sigma )=\bar{G}_\lambda (\sigma ). \end{aligned}$$

For the proof, we will need to carry out proofs of statements whose analogues for first gradients are well known. We closely follow the proofs in [11], adapting them to the current situation.

Definition B.2

Let \(f:\mathbb {R}^{n\times n}_{\mathrm {sym}}\rightarrow \mathbb {R}\). We say that f is symmetric rank one convex if

$$\begin{aligned} f(t\xi _1+(1-t)\xi _2)\le t f(\xi _1)+(1-t) f(\xi _2) \end{aligned}$$

for all \(t\in [0,1]\), and for all \(\xi _1,\xi _2\in \mathbb {R}^{n\times n}_{\mathrm {sym}}\) such that \(\xi _1-\xi _2=\alpha \eta \otimes \eta \) for some \(\alpha \in \mathbb {R}\), \(\eta \in \mathbb {R}^n\).

Furthermore, for \(f:\mathbb {R}^{n\times n}_{\mathrm {sym}}\rightarrow \mathbb {R}\), we set

$$\begin{aligned} R^{\mathrm {sym}}f(\xi ):=\sup \{g(\xi ):g\le f \text { and } g \text { is symmetric rank one convex}\}. \end{aligned}$$

Lemma B.3

Let \(\alpha ,\beta \in \mathbb {R}\), \(t\in [0,1]\), \(\varepsilon >0\) and

$$\begin{aligned} u_t:[a,b]\rightarrow \mathbb {R},\,\quad x\mapsto \frac{1}{2} (t\alpha +(1-t)\beta ) x^2. \end{aligned}$$

Then there exist \(I,J\subset [0,1]\) and \(u:[0,1]\rightarrow \mathbb {R}\) such that \(\overline{I}\cup \overline{J}=[0,1]\), \(I\cap J=\emptyset \), \(|I|=t\), \(|J|=(1-t)\) and

$$\begin{aligned}&u(0)=u_t(0),\quad u'(0)=u'_t(0),\\&u(1)=u_t(1),\quad u'(1)=u'_t(1),\\&\Vert u-u_t\Vert _{L^\infty }+\Vert u'-u_t'\Vert _{L^\infty }<\varepsilon \\&u''(x)= \alpha \quad \text { for }x\in I\\&u''(x)= \beta \quad \text { for }x\in J. \end{aligned}$$

Proof

For \(q\in [0,1-t]\), let \(\varphi _{t,q}:[0,1]\rightarrow \mathbb {R}\) be defined by

$$\begin{aligned} \varphi _{t,q}(x)={\left\{ \begin{array}{ll} (1-t)(\alpha -\beta )&{}\text { if } q\le x< q+t\\ -t(\alpha -\beta )&{}\text { else. }\end{array}\right. } \end{aligned}$$

Note that \(\int _0^1\text {d}s\varphi _{t,q}(s)=0\) independently of q. In fact, we may choose q such that we also have

$$\begin{aligned} \int _0^1\text {d}s\int _0^s \text {d}\tilde{s} \varphi _{t,q}(\tilde{s})=0. \end{aligned}$$

This choice of q shall be fixed from now on. We extend \(\varphi _{t,q}\) periodically on \(\mathbb {R}\). For \(k\in \mathbb {N}\), we set \(\Phi _k(x):=\varphi _{t,q}(kx)\). Choosing \(k\in \mathbb {N}\) large enough, we set

$$\begin{aligned} u(x):=u_t(x)+\int _0^x\text {d}s\int _0^s\text {d}\tilde{s}\, \Phi _k\left( \tilde{s}\right) . \end{aligned}$$

It is obvious that this function has all the desired properties (for large enough k). \(\square \)

Lemma B.4

Let \(\varepsilon >0\), \(t\in [0,1]\) and let \(\xi _1,\xi _2\in \mathbb {R}^{n\times n}_{\mathrm {sym}}\) and \(\alpha \in \mathbb {R}\), \(\eta \in \mathbb {R}^n\) such that \(\xi _1-\xi _2=\alpha \eta \otimes \eta \). Let \(l:[0,1]^n\rightarrow \mathbb {R}\) be affine, and \(u_t(x)=l(x)+\frac{1}{2} x^T(t\xi _1+(1-t)\xi _2)x\). Then there exists a function \(u:[0,1]^n\rightarrow \mathbb {R}\) and open sets \(\Omega _1,\Omega _2\subset [0,1]^n\) such that

$$\begin{aligned} \begin{aligned} \Vert u-u_t\Vert _{L^\infty }+\Vert u-u_t\Vert _{L^\infty }&<\varepsilon \\ \nabla ^2 u&= \xi _1\text { on }\Omega _1\\ \nabla ^2 u&= \xi _2\text { on }\Omega _2\\ \Vert \nabla ^2 u\Vert _{L^\infty }&\le C\\ |{\mathcal L}^n(\Omega _1)-t|&<\varepsilon \\ |{\mathcal L}^n(\Omega _2)-(1-t)|&<\varepsilon . \end{aligned} \end{aligned}$$

Proof

We may fill the cube \([0,1]^n\) by smaller cubes with one of the axes parallel to \(\eta \), and set \(u=u_t\) on the (small) remainder. In this way, we reduce the problem to the case where \(\eta =e_1\). Now let \(\Omega _\varepsilon :=[\varepsilon ,1-\varepsilon ]^n\), and \(\eta \in C_0^\infty ((0,1)^n)\) such that

$$\begin{aligned} \begin{aligned} \eta&=1\text { on }\Omega _\varepsilon \\ \Vert \nabla \eta \Vert _{L^\infty }&\le \frac{L}{\varepsilon }\\ \Vert \nabla ^2\eta \Vert _{L^\infty }&\le \frac{L}{\varepsilon ^2}, \end{aligned} \end{aligned}$$

where L is some numerical constant that does not depend on \(\varepsilon \). For \(x\in [0,1]\), we write \(\tilde{u}_t(s)=\frac{1}{2} (t(\xi _1)_{11}+(1-t)(\xi _2)_{11})s^2\). Let \(\delta >0\) to be chosen later. According to Lemma B.3, we may choose \(\tilde{u}:[0,1]\rightarrow \mathbb {R}\) and \(I,J\subset [0,1]\) such that \(\overline{I}\cup \overline{J}=[0,1]\), \(I\cap J=\emptyset \), \(|I|=t\), \(|J|=(1-t)\), and

$$\begin{aligned}&\tilde{u}(0)=\tilde{u}_t(0),\quad \tilde{u}'(0)=\tilde{u}'_t(0),\\&\tilde{u}(1)=\tilde{u}_t(1),\quad \tilde{u}'(1)=\tilde{u}'_t(1),\\&\Vert \tilde{u}-\tilde{u}_t\Vert _{L^\infty }+\Vert \tilde{u}'-\tilde{u}_t'\Vert _{L^\infty }<\delta \\&\tilde{u}''(x)= \xi _1 \quad \text { for }x\in I\\&\tilde{u}''(x)= \xi _2 \quad \text { for }x\in J. \end{aligned}$$

We set \(\psi (x_1,\ldots ,x_n)=\tilde{u}(x_1)\) and

$$\begin{aligned} u:=\eta (\psi +l)+(1-\eta ) u_t. \end{aligned}$$

Choosing \(\delta \) small enough (e.g. \(\delta <\min (\varepsilon ^3,\varepsilon ^3/L)\)), this choice of u satisfies all the requirements. We leave it to the reader to carry out the straightforward computations that lead to this statement. \(\square \)

Lemma B.5

Assume that \(f:\mathbb {R}^{n\times n}_{\mathrm {sym}}\rightarrow \mathbb {R}\) is bounded from above by a continuous function \(\tilde{f}\in C^0(\mathbb {R}^{n\times n}_{\mathrm {sym}})\). Then we have

$$\begin{aligned} Q_2 f\le R^{\mathrm {sym}}f. \end{aligned}$$

Proof

Since \(Q_2f\) is the largest 2-quasiconvex function that is less or equal to f, and \(R^{\mathrm {sym}}f\) is the largest symmetric rank one convex function that is less or equal to f, it suffices to show that if \(g:\mathbb {R}^{n\times n}\rightarrow \mathbb {R}\) is 2-quasiconvex, and \(g\le f\), then it is symmetric-rank-one convex. So let us suppose \(g:\mathbb {R}^{n\times n}\rightarrow \mathbb {R}\) is 2-quasiconvex, and let \(\xi _1,\xi _2\in \mathbb {R}^{n\times n}\) and \(\alpha \in \mathbb {R}\), \(\eta \in \mathbb {R}^n\) such that \(\xi _1-\xi _2=\alpha \eta \otimes \eta \). We need to show

$$\begin{aligned} g(t\xi _1+(1-t)\xi _2)\le t g(\xi _1)+(1-t) g(\xi _2) \end{aligned}$$
(55)

for all \(t\in [0,1]\). Let \(u_t(x):= \frac{1}{2} x^T(t\xi _1+(1-t)\xi _2)x\), and \(\varepsilon >0\) to be chosen later. Let u be the approximating function of Lemma B.4, with the sets \(\Omega _1,\Omega _2\subset [0,1]^n\) as in the statement of that lemma. Then we have \(u-u_t\in W^{2,\infty }_0([0,1]^n)\) and

$$\begin{aligned} \nabla ^2 u= t\xi _1+(1-t)\xi _2+\nabla ^2(u-u_t). \end{aligned}$$

Hence

$$\begin{aligned} \begin{aligned} g(t\xi _1+(1-t)\xi _2)&=\int _{[0,1]^n}g(\nabla ^2 u_t)\text {d}x\\&\le \int _{[0,1]^n}g(\nabla ^2 u)\text {d}x\\&={\mathcal L}^n(\Omega _1)g(\xi _1)+{\mathcal L}^n(\Omega _2)g(\xi _2)+ \int _{[0,1]^n\setminus (\Omega _1\cup \Omega _2)} g(\nabla ^2 u)\text {d}x\\&\le {\mathcal L}^n(\Omega _1)g(\xi _1)+{\mathcal L}^n(\Omega _2)g(\xi _2)+ \int _{[0,1]^n\setminus (\Omega _1\cup \Omega _2)} \tilde{f}(\nabla ^2 u)\text {d}x \end{aligned} \end{aligned}$$

Choosing \(\varepsilon \) small enough and using the properties of \(u,\Omega _1,\Omega _2\) from the statement of Lemma B.4, we see that the right hand side is smaller than \(tg(\xi _1)+(1-t)g(\xi _2)+\delta \) for any given \(\delta >0\); here we also used the assumption that \(\tilde{f}\) is continuous. This proves (55) and hence the lemma. \(\square \)

Definition B.6

Let \(f:\mathbb {R}^{n\times n}_{\mathrm {sym}}\rightarrow \mathbb {R}\). We set \(R^{\mathrm {sym}}_0 f=f\) and

$$\begin{aligned} R^{\mathrm {sym}}_{k+1}f(\xi )&:=\inf \{ t R^{\mathrm {sym}}_k(\xi _1)+(1- t )R^{\mathrm {sym}}_k(\xi _2):\\&\qquad t \xi _1+(1- t )\xi _2=\xi ,\xi _1-\xi _2=\alpha \eta \otimes \eta \text { for some }\alpha \in \mathbb {R},\,\eta \in \mathbb {R}^n\}. \end{aligned}$$

In complete analogy to Theorem 6.10, part 2 in [11], we show

Lemma B.7

Let \(f:\mathbb {R}^{n\times n}_{\mathrm {sym}}\rightarrow \mathbb {R}\), and let \(g:\mathbb {R}^{n\times n}_{\mathrm {sym}}\rightarrow \mathbb {R}\) be symmetric rank one convex with \(g\le f\). Then we have

$$\begin{aligned} R^{\mathrm {sym}}f=\inf _{k\in \mathbb {N}}R^{\mathrm {sym}}_k f. \end{aligned}$$

Proof

First we observe that for any \(k\in \mathbb {N}\), we have

$$\begin{aligned} g\le R^{\mathrm {sym}}_{k+1} f\le R^{\mathrm {sym}}_k f, \end{aligned}$$

and hence obtain that

$$\begin{aligned} R'f:=\inf _{k\in \mathbb {N}}R^{\mathrm {sym}}_k f=\lim _{k\rightarrow \infty }R^{\mathrm {sym}}_k f \end{aligned}$$

is well defined. For any symmetric rank one convex function g we have \(R'g=g\), and hence \(R'(R^{\mathrm {sym}}f)=R^{\mathrm {sym}}f\). Furthermore, if \(g\le g'\), then \(R'g\le R'g'\). Combining these observations with the fact \(R^{\mathrm {sym}}f\le f\), we obtain

$$\begin{aligned} R^{\mathrm {sym}}f\le R'f\le f. \end{aligned}$$

It remains to show that \(R'f\) is symmetric rank one convex. Assume that \(\xi _1,\xi _2\in \mathbb {R}^{n\times n}_{\mathrm {sym}}\), and \(\alpha \in \mathbb {R}\), \(\eta \in \mathbb {R}^{n}\) such that \(\xi _1-\xi _2=\alpha \eta \otimes \eta \). Let \(\varepsilon >0\). By definition of \(R'f\), there exist \(i,j\in \mathbb {N}\) such that

$$\begin{aligned} R^{\mathrm {sym}}_if(\xi _1)\le R'f(\xi _1)+\varepsilon ,\quad R^{\mathrm {sym}}_jf(\xi _2)\le R'f(\xi _2)+\varepsilon . \end{aligned}$$

Without loss of generality, we may assume \(i\le j\), which yields \(R^{\mathrm {sym}}_jf(\xi _1)\le R^{\mathrm {sym}}_if(\xi _1)\). Thus we obtain for every \(t\in [0,1]\),

$$\begin{aligned} \begin{aligned} R'f(t\xi _1+(1-t)\xi _2)&\le R^{\mathrm {sym}}_{j+1}(t\xi _1+(1-t)\xi _2)\\&\le tR^{\mathrm {sym}}_{j}(\xi _1)+(1-t)R^{\mathrm {sym}}_j(\xi _2)\\&\le tR'f(\xi _1)+(1-t)R'f(\xi _2)+\varepsilon . \end{aligned} \end{aligned}$$

Since \(\varepsilon >0\) was arbitrary, we obtain that \(R'f\) is symmetric rank one convex, which proves the lemma. \(\square \)

Lemma B.8

We have

$$\begin{aligned} R^{\mathrm {sym}}F_\lambda \le \bar{G}_\lambda . \end{aligned}$$

Proof

From the definition of \(R^{\mathrm {sym}}F_\lambda \), we see that for \(\xi \in \mathbb {R}^{2\times 2}_{\mathrm {sym}}\), \(R\in SO(2)\), we have

$$\begin{aligned} R^{\mathrm {sym}}F_\lambda (R^T\xi R)=R^{\mathrm {sym}}F_\lambda (\xi ). \end{aligned}$$

Hence it suffices to consider \(\xi \) of diagonal form,

$$\begin{aligned} \xi =\left( \begin{array}{cc} x&{}0\\ 0&{}y\end{array}\right) . \end{aligned}$$

We may assume \(|x|+|y|< \lambda \), since otherwise we know \(F_\lambda (\xi )=\bar{G}_\lambda (\xi )=\lambda +x^2+y^2\). Similarly, we may assume \(0<|x|+|y|\), since otherwise \(F_\lambda (\xi )=\bar{G}_\lambda (\xi )=0\). Let \(\alpha ,\beta \in (0,1)\) to be chosen later, and set

$$\begin{aligned} \xi _1=\left( \begin{array}{cc} 0&{}0\\ 0&{}0\end{array}\right) ,\quad \xi _2=\left( \begin{array}{cc} x/\alpha &{}0\\ 0&{}0\end{array}\right) ,\quad \xi _3=\left( \begin{array}{cc} x&{}0\\ 0&{}y/\beta \end{array}\right) . \end{aligned}$$

Note that \(\beta \xi _3+(1-\beta )(\alpha \xi _2+(1-\alpha ) \xi _1))=\xi \), and \(\xi _3-(\alpha \xi _2+(1-\alpha )\xi _1),\xi _2-\xi _1\) are both symmetric-rank-one. By Lemma B.7, we have

$$\begin{aligned} \begin{aligned} R^{\mathrm {sym}}F_\lambda (\xi )\le&\beta F_\lambda (\xi _3)+(1-\beta )\left( \alpha F_\lambda (\xi _2)+(1-\alpha ) F_\lambda (\xi _1)\right) \\ =&\beta \left( \lambda +x^2+\frac{y^2}{\beta ^2}\right) +(1-\beta )\alpha \left( \lambda +\frac{x^2}{\alpha ^2}\right) . \end{aligned} \end{aligned}$$

Now we assume \(|x|>0\). The right hand side in the last estimate is convex in \(\alpha \); it attains its minimum at \(\alpha = \frac{|x|}{\sqrt{\lambda }}\). Hence,

$$\begin{aligned} \begin{aligned} R^{\mathrm {sym}}F_\lambda (\xi )&\le \beta \left( \lambda +x^2+\frac{y^2}{\beta ^2}\right) +(1-\beta )2|x|\sqrt{\lambda }\\&= 2|x|\sqrt{\lambda }+\beta (\sqrt{\lambda }-|x|)^2+\frac{y^2}{\beta } \end{aligned} \end{aligned}$$

Choosing \(\beta =|y|/(\sqrt{\lambda }-|x|)\), we obtain

$$\begin{aligned} R^{\mathrm {sym}}F_\lambda (\xi )\le 2\sqrt{\lambda }(|x|+|y|-|xy|)=\bar{G}_\lambda (\xi ). \end{aligned}$$

It remains to prove the claim for the case \(|x|=0\). Then we have

$$\begin{aligned} \begin{aligned} R^{\mathrm {sym}}F_\lambda (\xi )\le&\beta F_\lambda (\xi _3)+(1-\beta ) F_\lambda (\xi _1)\\&= \beta \left( \lambda +x^2+\frac{y^2}{\beta ^2}\right) . \end{aligned} \end{aligned}$$

Again setting \(\beta =|y|/(\sqrt{\lambda }-|x|)\), we obtain the same conclusion as before. This proves the lemma. \(\square \)

Proof of Theorem B.1

By Theorem 6.28 in [11], we have \(\bar{G}_1=Q_1F_1\). We have \(F_\lambda =\lambda F(\cdot /\sqrt{\lambda })\), and hence by the definition of the quasiconvex envelope (51) it is easily seen that \(Q_1F_\lambda = \lambda Q_1F_1(\cdot /\sqrt{\lambda })\). It is also easily verified that \(\bar{G}_\lambda =\lambda \bar{G}(\cdot /\sqrt{\lambda })\), and since \(Q_1F_\lambda \le Q_2 F_\lambda \), we obtain \(\bar{G}_\lambda \le Q_2F_\lambda \). By Lemma B.5 and Lemma B.8, we also have the opposite inequality \(\bar{G}_\lambda \ge Q_2F_\lambda \). This proves the theorem. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olbermann, H. Michell trusses in two dimensions as a \(\Gamma \)-limit of optimal design problems in linear elasticity. Calc. Var. 56, 166 (2017). https://doi.org/10.1007/s00526-017-1266-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1266-x

Mathematics Subject Classification

Navigation