Skip to main content
Log in

Relaxation of quasiconvex functional in BV(Ω, ℝp) for integrands f(x, u,∇;u)

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper it is shown that if p(x, u,·) is a quasiconvex function with linear growth, then the relaxed functional in BV(Ω, ℝp) of

$$u \to \int\limits_\Omega {f(x, u(x), \nabla u(x)) dx} $$

with respect to the L 1 topology has an integral representation of the form

$$\begin{gathered} \mathfrak{F}(u) = \int\limits_\Omega {f(x, u(x), \nabla u(x)) dx + \int\limits_{\Sigma (u)} {K(x, u^ - (x), u^ + (x), v(x)) dH_{N - 1} (x)} } \hfill \\ + \int\limits_\Omega {f^\infty (x, u(x),dC(u))} \hfill \\ \end{gathered} $$

where Du = ∇u dx + u +u )⊗v dH N−1L(u)+C(u). The proof relies on a blow-up argument introduced by Fonseca & Müller in the case where uW 1,1 and on a recent result by Alberti showing that the Cantor part C(u) is rank-one valued.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E. & N. Fusco. Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86 (1984), 125–145.

    Google Scholar 

  2. Alberti, G. Rank-one property for derivatives of functions with bounded variation. To appear.

  3. Ambrosio, L. & G. Dal Maso. On the relaxation in BV(Ω; ℝm) of quasiconvex integrals. To appear.

  4. Ambrosio, L., S. Mortola & V. M. Tortorelli. Functionals with linear growth defined on vector valued BV functions. J. Math. Pures et Appl. 70 (1991), 269–323.

    Google Scholar 

  5. Ambrosio, L. & D. Pallara. Integral representation of relaxed functionals on BV(ℝn,ℝk) and polyhedral approximation. To appear.

  6. Aviles, P. & Y. Giga. Variational integrals on mappings of bounded variation and their lower semicontinuity. Arch. Rational Mech. Anal. 115 (1991), 201–255.

    Google Scholar 

  7. Baldo, S. Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids. To appear in Ann. Inst. H. Poincaré.

  8. Ball, J. M. & F. Murat. W 1,p quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984), 225–253.

    Google Scholar 

  9. Dacorogna, B. Direct Methods in the Calculus of Variations. Springer, 1989.

  10. De Giorgi, E. & G. Dal Maso. Γ-convergence and the calculus of variations. Mathematical Theories of Optimization (J. P. Cecconi & T. Zolezzi eds.), Springer Lecture Notes in Math. 979 (1983), 121–193.

  11. De Giorgi, E. Sulla convergenza di alcune successioni d'integrali del tipo dell'area. Rend. Matematica 8 (1975), 277–294.

    Google Scholar 

  12. Dal Maso, G. Integral representation on BV(Ω) of Γ-limits of variational integrals. Manuscripta Math. 30 (1980), 387–416.

    Google Scholar 

  13. De Giorgi, E. & G. Letta. Une notion générale de convergence faible pour des fonctions croissantes d'ensemble. Ann. Sc. Norm. Sup. Pisa Cl. Sci. 4 (1977), 61–99.

    Google Scholar 

  14. Evans, L. C. & R. F. Gariepy. Measure Theory and Fine Properties of Functions. CRC Press, 1991.

  15. Federer, H. Geometric Measure Theory. Springer, 1969.

  16. Fonseca, I. Lower semcontinuity of surface energies. Proc. Royal Soc. Edin. 120A (1992), 90–115.

    Google Scholar 

  17. Fonseca, I. & S. Müller. Quasiconvex integrands and lower semicontinuity in L 1. SIAM J. Math. Anal. 23 (1992), 1081–1098.

    Google Scholar 

  18. Fonseca, I. & P. Rybka. Relaxation of multiple integrals in the space BV(Ω; ℝp. Proc. Royal Soc. Edin. 121A (1992), 321–348.

    Google Scholar 

  19. Fonseca, I. & L. Tartar. The gradient theory of phase transitions for systems with two potential wells. Proc. Royal Soc. Edin. 111A (1989), 89–102.

    Google Scholar 

  20. Fonseca, I. & L. Tartar. The gradient theory of phase transitions in nonlinear elasticity. In preparation.

  21. Goffman, C. & J. Serrin. Sublinear functions of measures and variational integrals. Duke Math. J. 31 (1964), 159–178.

    Google Scholar 

  22. Giaquinta, M., G. Modica & J. Souček. Functionals with linear growth in the calculus of variations. Comment. Math. Univ. Carolinae 20 (1974), 143–172.

    Google Scholar 

  23. Giusti, E. Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, 1984.

  24. Gurtin, M. E. Some remarks concerning phase transitions inN. Report Dept. Math. Carnegie Mellon Univ. 1983.

  25. Gurtin, M. E. Some results and conjectures in the gradient theory of phase transitions. Metastability and Incompletely Posed Problems (S. S. Antman, J. L. Ericksen, D. Kinderlehrer & I. Müller, eds.), Springer, 1987, 135–146.

  26. Kinderlehrer, D. Private communication.

  27. Kohn, R. The relaxation of a double-well energy. Cont. Mech. Thermodyn. 3 (1991), 193–236.

    Google Scholar 

  28. Kohn, R. & P. Sternberg. Local minimizers and singular perturbations. Proc. R. Soc. Edin. 111A (1989), 69–84.

    Google Scholar 

  29. Modica, L. Gradient theory of phase transitions and minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987), 123–142.

    Google Scholar 

  30. Morrey, C. B. Multiple Integrals in the Calculus of Variations. Springer, 1966.

  31. Müller, S. On quasiconvex functions which are homogeneous of degree one. Indiana Univ. Math. J. 41 (1992), 295–301.

    Google Scholar 

  32. Owen, N. C. & P. Sternberg. Nonconvex variational problems with anisotropic perturbations. Nonlinear Analysis, Theory, Methods and Applications 16 (1991), 705–719.

    Google Scholar 

  33. Reshetnyak, Yu. G. Weak convergence of completely additive vector functions on a set. Sib. Math. J. 9 (1968), 1039–1045 (translation of: Sibirsk. Mat. Zh. 9 (1968), 1386–1394).

    Google Scholar 

  34. Šverák, V. Quasiconvex functions with subquadratic growth. Proc. R. Soc. Lond. 433A (1991), 733–752.

    Google Scholar 

  35. Zhang, K. A construction of quasiconvex functions with linear growth at infinity. To appear.

  36. Ziemer, W. Weakly Differentiable Functions. Springer, 1989.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. Kinderlehrer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fonseca, I., Müller, S. Relaxation of quasiconvex functional in BV(Ω, ℝp) for integrands f(x, u,∇;u). Arch. Rational Mech. Anal. 123, 1–49 (1993). https://doi.org/10.1007/BF00386367

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00386367

Keywords

Navigation