Skip to main content
Log in

Interior Calderón–Zygmund estimates for solutions to general parabolic equations of p-Laplacian type

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study general parabolic equations of the form \(u_t = \text{ div }\,\mathbf {A}(x,t, u,D u) +\text{ div }\,(|\mathbf {F}|^{p-2} \mathbf {F})+ f\) whose principal part depends on the solution itself. The vector field \(\mathbf {A}\) is assumed to have small mean oscillation in x, measurable in t, Lipschitz continuous in u, and its growth in Du is like the p-Laplace operator. We establish interior Calderón–Zygmund estimates for locally bounded weak solutions to the equations when \(p>2n/(n+2)\). This is achieved by employing a perturbation method together with developing a two-parameter technique and a new compactness argument. We also make crucial use of the intrinsic geometry method by DiBenedetto (Degenerate parabolic equations, Springer, New York, 1993) and the maximal function free approach by Acerbi and Mingione (Duke Math J 136(2):285–320, 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Mingione, G.: Gradient estimates for a class of parabolic systems. Duke Math. J. 136(2), 285–320 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bögelein, V.: Global Calderón–Zygmund theory for nonlinear parabolic systems. Calc. Var. Part. Differ. Equ. 51(3–4), 555–596 (2014)

    Article  MATH  Google Scholar 

  3. Byun, S.-S., Ok, J., Ryu, S.: Global gradient estimates for general nonlinear parabolic equations in nonsmooth domains. J. Differ. Equ. 254(11), 4290–4326 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Byun, S.-S., Wang, L.: Parabolic equations in Reifenberg domains. Arch. Ration. Mech. Anal. 176(2), 271–301 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Caffarelli, L., Peral, I.: On \(W^{1, p}\) estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51(1), 1–21 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. DiBenedetto, E.: Degenerate Parabolic Equations. Springer-Verlag, New York (1993)

    Book  MATH  Google Scholar 

  7. DiBenedetto, E., Friedman, A.: Regularity of solutions of nonlinear degenerate parabolic systems. J. Reine Angew. Math. 349, 83–128 (1984)

    MATH  MathSciNet  Google Scholar 

  8. DiBenedetto, E., Friedman, A.: Hölder estimates for nonlinear degenerate parabolic systems. J. Reine Angew. Math. 357, 1–22 (1985)

    MATH  MathSciNet  Google Scholar 

  9. DiBenedetto, E., Manfredi, J.: On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems. Am. J. Math. 115(5), 1107–1134 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Duzaar, F., Mingione, M., Steffen, K.: Parabolic systems with polynomial growth and regularity. Mem. Am. Math. Soc 214(1005), x+118 pp (2011)

    MATH  MathSciNet  Google Scholar 

  11. Iwaniec, T.: Projections onto gradient fields and \(L^p\)-estimates for degenerated elliptic operators. Studia Math. 75(3), 293–312 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kinnunen, J., Lewis, J.: Higher integrability for parabolic systems of \(p\)-Laplacian type. Duke Math. J. 102(2), 253–271 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kinnunen, J., Zhou, S.: A local estimate for nonlinear equations with discontinuous coefficients. Comm. Part. Differ. Equ. 24(11–12), 2043–2068 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kuusi, T., Mingione, G.: New perturbation methods for nonlinear parabolic problems. J. Math. Pures Appl. 98(4), 390–427 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kuusi, T., Mingione, G.: Gradient regularity for nonlinear parabolic equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12(4), 755–822 (2013)

    MATH  MathSciNet  Google Scholar 

  16. Ladyzenskaja, O., Solonnikov, V., Uralt́ceva, N.: Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs. American Mathematical Society, Providence (1968)

    Google Scholar 

  17. Leone, C., Misawa, M., Verde, A.: The regularity for nonlinear parabolic systems of p-Laplacian type with critical growth. J. Differ. Equ. 256(8), 2807–2845 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hoang, L., Nguyen, T., Phan, T.: Gradient estimates and global existence of smooth solutions to a cross-diffusion system. SIAM J. Math. Anal. 47(3), 2122–2177 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  20. Meyers, N., Elcrat, A.: Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions. Duke Math. J. 42, 121–136 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  21. Misawa, M.: Partial regularity results for evolutional p-Laplacian systems with natural growth. Manuscr. Math. 109(4), 419–454 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Misawa, M.: \(L^q\) estimates of gradients for evolutional \(p\)-Laplacian systems. J. Differ. Equ. 219(2), 390–420 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nguyen, T., Phan, T.: Interior gradient estimates for quasilinear elliptic equations. Calc. Var. 55, 59 (2016). https://doi.org/10.1007/s00526-016-0996-5

    Article  MATH  MathSciNet  Google Scholar 

  24. Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51(1), 126–150 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zou, W., Li, J.: Existence and uniqueness of bounded weak solutions for some nonlinear parabolic problems. Bound. Value Probl. 2015, 69 (2015)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Truyen Nguyen.

Additional information

Communicated by L. Caffarelli.

The research of the author is supported in part by a Grant from the Simons Foundation (# 318995).

Appendix A: A comparison principle

Appendix A: A comparison principle

Let \(\Omega _T :=\Omega \times (0,T)\) with \(T>0\) and \(\Omega \) being a bounded domain in \(\mathbb {R}^n\), \(n\ge 2\). Let \({\mathbb K}\subset \mathbb {R}\) be an open interval, \( \mathbf {A}: \Omega _T \times \overline{{\mathbb K}}\times \mathbb {R}^n \longrightarrow \mathbb {R}^n\), \(\Phi : \Omega _T \times \overline{{\mathbb K}}\rightarrow \mathbb {R}^n\) and \(g,\, b: \Omega _T \times \overline{{\mathbb K}}\rightarrow \mathbb {R}\) be Carathéodory maps. We assume that there exist constants \(\Lambda >0\) and \(1< p<\infty \) such that the following conditions are satisfied for a.e. \(z\in \Omega _T\) and all \(\xi ,\eta \in \mathbb {R}^n\):

$$\begin{aligned}&\big \langle \mathbf {A}(z,u,\xi ) -\mathbf {A}(z,u,\eta ), \xi -\eta \big \rangle \ge 0\quad \, \, \forall u\in \overline{{\mathbb K}}, \end{aligned}$$
(A.1)
$$\begin{aligned}&u\in \mathbb {R}\mapsto g(z,u) \text{ is } \text{ monotone } \text{ nondecreasing }. \end{aligned}$$
(A.2)

Also, there exist functions \(K\in L^{p'}(\Omega _T)\) and \(k\in L^1(0,T)\) such that

$$\begin{aligned}&|\mathbf {A}(z,u_1,\xi )-\mathbf {A}(z,u_2,\xi )| \le |u_1 - u_2| \Big (\Lambda |\xi |^{p-1} + K(z)\Big ), \end{aligned}$$
(A.3)
$$\begin{aligned}&|\Phi (z,u_1)-\Phi (z,u_2)| \le |u_1 - u_2| K(z),\quad \text{ and } \quad |b(z,u_1)-b(z,u_2)| \le |u_1 - u_2| k(t) \end{aligned}$$
(A.4)

for all \(u_1, u_2\in \overline{{\mathbb K}}\) with \(|u_1-u_2|\) sufficiently small.

Definition A.1

A map \( u\in C((0,T); L^2(\Omega ))\cap L^p(0,T; W^{1,p}(\Omega )) \) is called a weak solution to

$$\begin{aligned} u_t = \text{ div }\,\mathbf {A}(z, u,D u) +\text{ div }\,\Phi (z,u) -g(z,u) +b(z,u) \quad \text {in}\quad \Omega _T \end{aligned}$$
(A.5)

if \(u(z)\in \overline{{\mathbb K}}\,\,\) for a.e. \(z\in \Omega _T\) and

$$\begin{aligned} \int _{\Omega _T} u \varphi _t\,dz = \int _{\Omega _T} \langle \mathbf {A}(z, u,D u), D \varphi \rangle \,dz +\int _{\Omega _T} \langle \Phi (z, u), D \varphi \rangle \,dz + \int _{\Omega _T} [g(z,u)-b(z,u)] \varphi \,dz \end{aligned}$$

for every \(\varphi \in C_0^\infty (\Omega _T)\).

The following result shows that equation (A.5) admits a comparison principle.

Proposition A.2

(comparison principle). Assume that \(\mathbf {A}\), \(\Phi \), g and b satisfy conditions (A.1)–(A.4). Let u and v be weak solutions to (A.5) such that \(u\le v\) on \(\partial _p \Omega _T\). Then

$$\begin{aligned} u \le v \quad \text{ a.e. } \text{ in }\quad \Omega _T. \end{aligned}$$

Remark A.3

By inspecting the arguments below, ones see that we in fact only need to assume that u is a weak subsolution and v is a weak supersolution.

Proof

For \(\varepsilon >0\) small, we define \(h_\varepsilon (s)\) as in (5.16). Let us denote \(\Omega _t =\Omega \times (0,t)\). By using \(h_\varepsilon (u-v)\) as a test function in the equations for u and v and subtracting the resulting expressions, we obtain:

$$\begin{aligned}&\int _{\Omega }\Big (\int _0^{(u-v)_+(x,t)} h_\varepsilon (s)\, ds \Big )dx +\int _{\Omega _t}h_\varepsilon '(u-v)\langle \mathbf {A}(z, u,D u)-\mathbf {A}(z, u,D v) , Du -Dv\rangle \, dz\\&+\int _{\Omega _t}\Big [g(z,u)-g(z,v)\Big ] h_\varepsilon (u-v) \, dz\\&= \int _{\Omega _t}h_\varepsilon '(u-v)\langle \mathbf {A}(z, v,D v)-\mathbf {A}(z, u,D v) , Du -Dv\rangle \, dz\\&\qquad -\int _{\Omega _t}h_\varepsilon '(u-v)\langle \Phi (z, u)-\Phi (z, v) , Du -Dv\rangle \, dz +\int _{\Omega _t}\Big [b(z,u)-b(z,v)\Big ] h_\varepsilon (u-v) \, dz \end{aligned}$$

for all \(t\in (0,T)\). Since the second and third terms on the left-hand side are nonnegative thanks to (A.1)–(A.2), we deduce that

$$\begin{aligned}&\int _{\Omega }\Big (\int _0^{(u-v)_+(x,t)} h_\varepsilon (s)\, ds \Big )dx \nonumber \\&\le \frac{1}{\varepsilon } \int _0^t \int _{\Omega \cap \{0<u-v<\varepsilon \}}(u-v)\Big (\Lambda |Dv|^{p-1} + 2 K\Big ) |Du -Dv|\, dz\nonumber \\&\quad +\int _{\Omega _t}k(\tau ) |u-v| h_\varepsilon (u-v) \, dx d\tau \nonumber \\&\le \int _0^t \int _{\Omega \cap \{0<u-v<\varepsilon \}}\Big (\Lambda |Dv|^{p-1} + 2K\Big ) |Du -Dv|\, dz +\int _{\Omega _t}k(\tau ) |u-v| h_\varepsilon (u-v) \, dx d\tau . \end{aligned}$$
(A.6)

As \(\varepsilon \rightarrow 0^+\), we have

$$\begin{aligned} \int _{\Omega }\Big (\int _0^{(u-v)_+(x,t)} h_\varepsilon (s)\, ds \Big )dx \longrightarrow \int _{\Omega } (u-v)_+(x,t)\,dx. \end{aligned}$$

Moreover, the first term on the right-hand side tends to zero and the last term tends to

$$\begin{aligned} \int _{\Omega _t}k(\tau ) |u-v| \mathrm sgn^+(u-v) \, dx d\tau =\int _0^t\int _{\Omega } k(\tau ) (u-v)_+ \, dx d\tau . \end{aligned}$$

Thus if we denote \(m(\tau ) :=\int _{\Omega } (u-v)_+(x,\tau )\,dx\), then by letting \(\varepsilon \rightarrow 0^+\) in (A.6) we obtain

$$\begin{aligned} m(t) \le \int _0^t k(\tau ) m(\tau )\, d\tau \quad \forall t\in (0,T). \end{aligned}$$

Therefore, it follows from the Grönwalls inequality that \(m(t)\le 0\) for every \(t\in (0,T)\). We then conclude that \(\int _{\Omega _T} (u-v)_+(x,t)\,dx dt=0\), and hence \(u\le v\) for a.e. in \(\Omega _T\). The proof is complete. \(\square \)

Remark A.4

We note that the comparison principle in Proposition A.2 together with the standard method for proving existence using Galerkin approximation (see [16, pp. 466–475] and [19, 25]) ensures that: for any \(u\in L^\infty (Q_3)\cap L^p(-9,9; W^{1,p}(B_3)) \) satisfying \(u(z)\in \overline{{\mathbb K}}\,\) for a.e. \(z\in Q_3\), the Dirichlet problem

$$\begin{aligned} \left\{ \begin{array}{lcll} v_t &{}=&{}\text{ div }\,\mathbf {A}(z, v,D v) \quad &{}\text {in}\quad Q_3, \\ v &{} =&{} u\quad &{}\text {on}\quad \partial _p Q_3 \end{array}\right. \end{aligned}$$

has a weak solution in the sense of Definition A.1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T. Interior Calderón–Zygmund estimates for solutions to general parabolic equations of p-Laplacian type. Calc. Var. 56, 173 (2017). https://doi.org/10.1007/s00526-017-1265-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1265-y

Mathematics Subject Classification

Navigation