Skip to main content
Log in

Interior Sobolev regularity for fully nonlinear parabolic equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In the present paper, we establish sharp Sobolev estimates for solutions of fully nonlinear parabolic equations, under minimal, asymptotic, assumptions on the governing operator. In particular, we prove that solutions are in \(W^{2,1;p}_{ loc }\). Our argument unfolds by importing improved regularity from a limiting configuration. In this concrete case, we recur to the recession function associated with F. This machinery allows us to impose conditions solely on the original operator at the infinity of \(\mathcal {S}(d)\). From a heuristic viewpoint, integral regularity would be set by the behavior of F at the ends of that space. Moreover, we explore a number of consequences of our findings, and develop some related results; these include a parabolic version of Escauriaza’s exponent, a universal modulus of continuity for the solutions and estimates in p-BMO spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Caffarelli, L.: Interior a priori estimates for solutions of fully nonlinear equations. Ann. Math. (2) 130(1), 189–213 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Caffarelli, L., Cabré, X.: Fully Nonlinear Elliptic Equations, Volume of 43 American Mathematical Society Colloquium Publications. American Mathematical Society, Providence (1995)

  3. Caffarelli, L., Huang, Q.: Estimates in the generalized Campanato–John–Nirenberg spaces for fully nonlinear elliptic equations. Duke Math. J. 118(1), 1–17 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caffarelli, L., Stefanelli, U.: A counterexample to \(C^{2,1}\) regularity for parabolic fully nonlinear equations. Commun. Partial Differ. Equ. 33(7–9), 1216–1234 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cerutti, M.-C., Grimaldi, A.: Uniqueness for second-order parabolic equations with discontinuous coefficients. Ann. Mat. Pura Appl. (4) 186(1), 147–155 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen G.: Non-Divergence Parabolic Equations of Second Order with Critical Drift in Lebesgue Spaces. arXiv preprint arXiv:1511.01215 (2015)

  7. Crandall, M., Fok, K., Kocan, M., Świȩch, A.: Remarks on nonlinear uniformly parabolic equations. Indiana Univ. Math. J. 47(4), 1293–1326 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Crandall, M., Kocan, M., Świȩch, A.: \(L^p\)-theory for fully nonlinear uniformly parabolic equations. Commun. Partial Differ. Equ. 25(11–12), 1997–2053 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. da Silva, J.-V., Teixeira, E.: Sharp regularity estimates for second order fully nonlinear parabolic equations. Math. Ann. (2016). doi:10.1007/s00208-016-1506-y

    Google Scholar 

  10. Dong, H., Krylov, N., Li, X.: On fully nonlinear elliptic and parabolic equations with VMO coefficients in domains. Algebra Anal. 24(1), 53–94 (2012)

    MathSciNet  Google Scholar 

  11. Escauriaza, L.: \(W^{2, n}\) a priori estimates for solutions to fully nonlinear equations. Indiana Univ. Math. J. 42(2), 413–423 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Escauriaza, L.: Bounds for the fundamental solution of elliptic and parabolic equations in nondivergence form. Commun. Partial Differ. Equ. 25(5–6), 821–845 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fabes, E., Stroock, D.: The \(L^p\)-integrability of Green’s functions and fundamental solutions for elliptic and parabolic equations. Duke Math. J. 51(4), 997–1016 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Imbert, C., Silvestre L.: An introduction to fully nonlinear parabolic equations. In: An Introduction to the Kähler–Ricci Flow, Volume 2086 of Lecture Notes in Math., pp. 7–88. Springer, Cham (2013)

  15. Krylov N.: Sequences of convex functions, and estimates of the maximum of the solution of a parabolic equation. Sib. Math. 17(2), 290–303, 478 (1976)

  16. Krylov, N.: Estimates for derivatives of the solutions of nonlinear parabolic equations. Dokl. Akad. Nauk SSSR 274(1), 23–26 (1984)

    MathSciNet  Google Scholar 

  17. Krylov, N.: Parabolic and elliptic equations with VMO coefficients. Commun. Partial Differ. Eqs. 32(1–3), 453–475 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Krylov, N.: Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms. J. Funct. Anal. 250(2), 521–558 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Krylov, N., Safonov M.: A property of the solutions of parabolic equations with measurable coefficients. Izv. Akad. Nauk SSSR Ser. Mat. 44(1), 161–175, 239 (1980)

  20. Lin, F.: Second derivative \(L^p\)-estimates for elliptic equations of nondivergent type. Proc. Am. Math. Soc. 96(3), 447–451 (1986)

    MathSciNet  MATH  Google Scholar 

  21. Pimentel, E., Teixeira, E.: Sharp Hessian integrability estimates for nonlinear elliptic equations: an asymptotic approach. J. Math. Pures Appl. (9) 106(4), 744–767 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Silvestre, L., Teixeira E.: Regularity estimates for fully non linear elliptic equations which are asymptotically convex. In: Contributions to Nonlinear Elliptic Equations and Systems, pp. 425–438. Springer, Berlin (2015)

  23. Teixeira, E.: Universal moduli of continuity for solutions to fully nonlinear elliptic equations. Arch. Ration. Mech. Anal. 211(3), 911–927 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Teixeira, E., Urbano, J.-M.: A geometric tangential approach to sharp regularity for degenerate evolution equations. Anal. PDE 7(3), 733–744 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tso, K.: On an Aleksandrov–Bakelman type maximum principle for second-order parabolic equations. Commun. Partial Differ. Equ. 10(5), 543–553 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, L.: On the regularity theory of fully nonlinear parabolic equations. I. Commun. Pure Appl. Math. 45(1), 27–76 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, L.: On the regularity theory of fully nonlinear parabolic equations. II. Commun. Pure Appl. Math. 45(2), 141–178 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, L.: On the regularity theory of fully nonlinear parabolic equations. III. Commun. Pure Appl. Math. 45(3), 255–262 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Winter, N.: \(W^{2, p}\) and \(W^{1, p}\)-estimates at the boundary for solutions of fully nonlinear, uniformly elliptic equations. Z. Anal. Anwend. 28(2), 129–164 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

For valuable comments and suggestions on the material in this paper, the authors are grateful to B. Sirakov, A. Świȩch, E. Teixeira and an anonymous referee. R. Castillo is funded by CAPES-Brazil; E. Pimentel was partially supported by FAPESP (Grant # 2015/13011-6) and PUC-Rio baseline funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgard A. Pimentel.

Additional information

Communicated by L. Caffarelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo, R., Pimentel, E.A. Interior Sobolev regularity for fully nonlinear parabolic equations. Calc. Var. 56, 127 (2017). https://doi.org/10.1007/s00526-017-1227-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1227-4

Mathematics Subject Classification

Navigation