Skip to main content
Log in

Uniqueness and nondegeneracy of positive radial solutions of \(\mathbf {div\,{\varvec{(}}{\varvec{\rho }} \nabla u{\varvec{)}} +{\varvec{\rho }}{\varvec{(}}-gu+hu^p{\varvec{)}}=0}\)

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the uniqueness and nondegeneracy of positive solutions of \(\mathrm {div}\,(\rho \nabla u) +\rho (-g u+h u^p)=0 \) in a ball, the entire space, an annulus, or an exterior domain under the Dirichlet boundary condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkinson, F.V., Peletier, L.A.: Sur les solutions radiales de l’équation \(\Delta u+{\frac{1}{2} }x\cdot \nabla u+{\frac{1}{2}}\lambda u+\vert u\vert ^{p-1}u=0\). C. R. Acad. Sci. Paris Sér. I Math. 302, 99–101 (1986)

  2. Bandle, C., Brillard, A., Flucher, M.: Green’s function, harmonic transplantation, and best Sobolev constant in spaces of constant curvature. Trans. Am. Math. Soc. 350, 1103–1128 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bandle, C., Peletier, L.A.: Best Sobolev constants and Emden equations for the critical exponent in \(S^3\). Math. Ann. 313, 83–93 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bandle, C., Benguria, R.: The Brézis-Nirenberg problem on \({\mathbb{S}^{3}}\). J. Differ. Equ. 178, 264–279 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezis, H., Peletier, L.A.: Elliptic equations with critical exponent on spherical caps of \(S^ 3\). J. Anal. Math. 98, 279–316 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Byeon, J., Oshita, Y.: Uniqueness of standing waves for nonlinear Schrödinger equations. Proc. R. Soc. Edinb. Sect. A 138, 975–987 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, C.C., Lin, C.S.: Uniqueness of the ground state solutions of \(\Delta u+f(u)=0\), Commun. Partial Differ. Equ. 16, 1549–1572 (1991)

  10. Chen, W., Wei, J.: On the Brezis-Nirenberg problem on \(\mathbf{S}^ 3\), and a conjecture of Bandle-Benguria, language=English, with English and French summaries. C. R. Math. Acad. Sci. Paris 341, 153–156 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coffman, C.V.: Uniqueness of the ground state solution for \(\Delta u-u+u^{3}=0\) and a variational characterization of other solutions. Arch. Ration. Mech. Anal. 46, 81–95 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dohmen, C., Hirose, M.: Structure of positive radial solutions to the Haraux-Weissler equation. Nonlinear Anal. 33, 51–69 (1998)

  13. Escobedo, M., Kavian, O.: Variational problems related to self-similar solutions of the heat equation. Nonlinear Anal. 11, 1103–1133 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Felmer, P., Martínez, S., Tanaka, K.: Uniqueness of radially symmetric positive solutions for \(-\Delta u+u=u^ p\) in an annulus. J. Differ. Equ. 245, 1198–1209 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hadj Selem, F.: Radial solutions with prescribed numbers of zeros for the nonlinear Schrödinger equation with harmonic potential. Nonlinearity 24, 1795–1819 (2011)

  16. Hadj Selem, F., Kikuchi, H.: Existence and non-existence of solution for semilinear elliptic equation with harmonic potential and Sobolev critical/supercritical nonlinearities. J. Math. Anal. Appl. 387, 746–754 (2012)

  17. Haraux, A., Weissler, F.B.: Nonuniqueness for a semilinear initial value problem, Indiana Univ. Math. J. 31, 167–189 (1982)

  18. Hirose, M.: Structure of positive radial solutions to the Haraux-Weissler equation. II. Adv. Math. Sci. Appl. 9, 473–497 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Hirose, M.: Structure of positive radial solutions to scalar field equations with harmonic potential. J. Differ. Equ. 178, 519–540 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hirose, M., Ohta, M.: On positive solutions for nonlinear elliptic equations with harmonic potential (Bęedlewo/Warsaw, 2000). In: GAKUTO Internat. Ser. Math. Sci. Appl., vol. 17. Gakkōtosho, Tokyo, pp. 40–63 (2002)

  21. Hirose, M.: Uniqueness of positive solutions to scalar field equations with harmonic potential. Funkcial. Ekvac. 50, 67–100 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kabeya, Y., Tanaka, K.: Uniqueness of positive radial solutions of semilinear elliptic equations in \(\mathbf{R}^ N\) and Séré’s non-degeneracy condition. Commun. Partial Differ. Equ. 24, 563–598 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kawano, N., Yanagida, E., Yotsutani, S.: Structure theorems for positive radial solutions to \({\rm div}(\vert Du\vert ^ {m-2}Du)+K(\vert x\vert )u^ q=0\) in \({\mathbf{R}}^ n\). J. Math. Soc. Jpn 45, 719–742 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kawano, N., Yanagida, E., Yotsutani, S.: Structure theorems for positive radial solutions to \(\Delta u+K(\vert x\vert )u^ p=0\) in \(\mathbf{R}^ n\). Funkcial. Ekvac. 36, 557–579 (1993)

    MathSciNet  MATH  Google Scholar 

  25. Kwong, M.K.: Uniqueness of positive solutions of \(\Delta u-u+u^ p=0\), Arch. Ration. Mech. Anal. 105, 243–266 (1989)

  26. Kwong, M.K., Li, Y.: Uniqueness of radial solutions of semilinear elliptic equations. Trans. Am. Math. Soc. 333, 339–363 (1992)

  27. Li, Y., Ni, W.-M.: On conformal scalar curvature equations in \({\mathbf{R}}^ n\). Duke Math. J. 57, 895–924 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, Y., Ni, W.-M.: On the existence and symmetry properties of finite total mass solutions of the Matukuma equation, the Eddington equation and their generalizations. Arch. Ration. Mech. Anal. 108, 175–194 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, Y., Ni, W.-M.: On the asymptotic behavior and radial symmetry of positive solutions of semilinear elliptic equations in \({\mathbf{R}}^ n\). I. Asymptotic behavior. Arch. Ration. Mech. Anal. 118, 195–222 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, Y.: On the asymptotic behavior and radial symmetry of positive solutions of semilinear elliptic equations in \({\mathbf{R}}^ n\). II. Radial symmetry. Arch. Ration. Mech. Anal. 118, 223–243 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, Y.: On the positive solutions of the Matukuma equation. Duke Math. J. 70, 575–589 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  32. McLeod, K.: Uniqueness of positive radial solutions of \(\Delta u+f(u)=0\) in \({\mathbf{R}}^ n\). II. Trans. Am. Math. Soc. 339, 495–505 (1993)

    MathSciNet  MATH  Google Scholar 

  33. McLeod, K., Serrin, J.: Uniqueness of positive radial solutions of \(\Delta u+f(u)=0\) in \({\mathbf{R}}^ n\). Arch. Ration. Mech. Anal. 99, 115–145 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  34. Naito, Y.: Non-uniqueness of solutions to the Cauchy problem for semilinear heat equations with singular initial data. Math. Ann. 329, 161–196 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Naito, Y.: Self-similar solutions for a semilinear heat equation with critical Sobolev exponent. Indiana Univ. Math. J. 57, 1283–1315 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ni, W.-M.: Uniqueness of solutions of nonlinear Dirichlet problems. J. Differ. Equ. 50, 289–304 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ni, W-M.: Uniqueness, nonuniqueness and related questions of nonlinear elliptic and parabolic equations. In: Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983), Proc. Sympos. Pure Math., vol. 45. Amer. Math. Soc. Providence, pp. 229–241 (1986)

  38. Ni, W-M., Nussbaum, R.D.: Uniqueness and nonuniqueness for positive radial solutions of \(\Delta u+f(u,r)=0\). Commun. Pure Appl. Math. 38, 67–108 (1985)

  39. Ni, W-M., Takagi, I.: Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math. J. 70(2), 247–281 (1993)

  40. Ni, W.-M., Yotsutani, S.: Semilinear elliptic equations of Matukuma-type and related topics. Jpn. J. Appl. Math. 5, 1–32 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  41. Noussair, E.S., Swanson, C.A.: Solutions of Matukuma’s equation with finite total mass. Indiana Univ. Math. J. 38, 557–561 (1989)

  42. Peletier, L.A., Serrin, J.: Uniqueness of positive solutions of semilinear equations in \({\mathbf{R}}^{n}\). Arch. Ration. Mech. Anal. 81, 181–197 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  43. Peletier, L.A., Terman, D., Weissler, F.B.: On the equation \(\Delta u+\frac{1}{2}x\cdot \nabla u+f(u)=0\). Arch. Ration. Mech. Anal. 94, 83–99 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  44. Pucci, P., Serrin, J.: Uniqueness of ground states for quasilinear elliptic operators. Indiana Univ. Math. J. 47, 501–528 (1998)

    MathSciNet  MATH  Google Scholar 

  45. Serrin, J., Tang, M.: Uniqueness of ground states for quasilinear elliptic equations. Indiana Univ. Math. J. 49, 897–923 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sato, Y.: Multi-peak solutions for nonlinear Schrödinger equations. Thesis, Waseda University (2007)

  47. Shioji, N., Watanabe, K.: A generalized Pohožaev identity and uniqueness of positive radial solutions of \(\Delta u+g(r)u+h(r)u^ p=0\). J. Differ. Equ. 255, 4448–4475 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tang, M.: Uniqueness and global structure of positive radial solutions for quasilinear elliptic equations. Commun. Partial Differ. Equ. 26, 909–938 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tang, M.: Uniqueness of positive radial solutions for \(\Delta u-u+u^ p=0\) on an annulus. J. Differ. Equ. 189, 148–160 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  50. Weissler, F.B.: Asymptotic analysis of an ordinary differential equation and nonuniqueness for a semilinear partial differential equation. Arch. Ration. Mech. Anal. 91, 231–245 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  51. Weissler, F.B.: Rapidly decaying solutions of an ordinary differential equation with applications to semilinear elliptic and parabolic partial differential equations. Arch. Ration. Mech. Anal. 91, 247–266 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  52. Yanagida, E.: Structure of positive radial solutions of Matukuma’s equation. Jpn. J. Ind. Appl. Math. 8, 165–173 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  53. Yanagida, E.: Uniqueness of positive radial solutions of \(\Delta u+g(r)u+h(r)u^ p=0\) in \({\mathbf{R}}^ n\). Arch. Ration. Mech. Anal. 115, 257–274 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yanagida, E.: Uniqueness of positive radial solutions of \(\Delta u+f(u,\vert x\vert )=0\). Nonlinear Anal. 19, 1143–1154 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  55. Yanagida, E., Yotsutani, S.: Classification of the structure of positive radial solutions to \(\Delta u+K(\vert x\vert )u^ p=0\) in \({\mathbf{R}}^n\). Arch. Ration. Mech. Anal. 124, 239–259 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  56. Yanagida, E., Yotsutani, S.: Existence of positive radial solutions to \(\Delta u+K(\vert x\vert )u^ p=0\) in \({\mathbf{R}}^n\). J. Differ. Equ. 115, 477–502 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the referee for his/her careful reading and invaluable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Shioji.

Additional information

Communicated by C. S. Lin.

Naoki Shioji: This work is partially supported by the Grant-in-Aid for Scientific Research (C) (No. 26400160) from Japan Society for the Promotion of Science. K. Watanabe: This work is partially supported by the Grant-in-Aid for Scientific Research (C) (No. 24540199) from Japan Society for the Promotion of Science.

Appendices

Appendix 1: The functions a(r), b(r), c(r), G(r) and D(r)

In this appendix, we give detailed expressions of a(r), b(r), c(r), G(r) and D(r) for some specified f(r), g(r) and h(r). In the case \(f(r)=r^{n-1}\) (g and h are any functions), we have

$$\begin{aligned} a(r)&=r^\frac{2(n-1)(p+1)}{p+3}h(r)^\frac{-2}{p+3},\qquad b(r) =\frac{r^{\frac{2(n-1)(p+1)}{p+3}-1} }{(p+3)h(r)^{\frac{p+5}{p+3}}} \bigl (2(n-1)h(r)+r h_r(r)\bigr ),\\ c(r)&=\frac{r^{\frac{2(n-1)(p+1)}{p+3}-2}}{(p+3)^2h(r)^{\frac{2(p+4)}{p+3}}} \Bigl ( 2 (n-1) \bigl [n+2-(n-2)p\bigr ] h(r)^2 +(p+5)r^2 h_r(r)^2\\&\qquad -(n-1)(p-5)r h(r) h_r(r) -(p+3)r^2h(r) h_{rr}(r) \Bigr ),\\ G(r)&=\frac{r^{\frac{2(n-1)(p+1)}{p+3}-3}}{2(p+3)^3h(r)^{\frac{2}{p+3}+3}} \biggl ( 4(n-1) \bigl [n+2-(n-2)p\bigr ] \bigl [n-4+(n-2)p\bigr ]h(r)^3\\&\qquad -\Bigl [2(n-1)(p-1)(p+3)^2 r^2 h(r)^3 -4(p+3)^2 r^3 h(r)^2h_r(r)\Bigr ]g(r)\\&\qquad -(p+3)^3 r^3 g_r(r)h(r)^3+(n-1) \bigl [ (2n-3)p(6-p)+6n-33\bigr ]rh(r)^2h_r(r)\\&\qquad +3(n-1)(p-1)(p+5) r^2 h(r) h_r(r)^2 -2(p+4)(p+5) r^3 h_r(r)^3\\&\qquad -3(n-1)(p-1)(p+3) r^2 h(r)^2 h_{rr}(r)\\&\qquad +3(p+3)(p+5) r^3 h(r) h_r(r) h_{rr}(r) -(p+3)^2 r^3 h(r)^2 h_{rrr}(r) \biggr ),\\ D(r)&=\frac{r^{\frac{4 (n-1) (p+1)}{p+3}-2}}{(p+3)^2h(r)^{\frac{2(p+5)}{p+3}} } \Bigl ( 2 (n-1) [(n-2) p+n-4]h(r)^2 +(p+3)^2 r^2 g(r)h(r)^2\\&\qquad -(p+4) r^2 h_r(r)^2+ (p+3) r^2h(r) h_{rr}(r)+(n-1) (p-1) rh(r)h_r(r)\Bigr ). \end{aligned}$$

In the case \(f(r)=r^{n-1}\) and \(h(r)=1\), we have

$$\begin{aligned} a(r)&=r^{\frac{2 (n-1) (p+1)}{p+3}},\qquad b(r)=\frac{2 (n-1)}{p+3} r^{\frac{2 (n-1) (p+1)}{p+3}-1},\\ c(r)&= \frac{2 (n-1) [n+2-(n-2) p]}{(p+3)^2} r^{\frac{2 (n-1) (p+1)}{p+3}-2},\\ G(r)&= \frac{r^{\frac{2 (n-1) (p+1)}{p+3}-3}}{2 (p+3)^3} \Bigl ( 4 (n-1) [(n-2) p+n-4][n+2-(n-2) p]\\&\quad -2 (n-1) (p-1) (p+3)^2r^2 g(r)-(p+3)^3 r^3 g_r(r) \Bigr ),\\ D(r)&=\frac{r^{\frac{4 (n-1) (p+1)}{p+3}-2}}{(p+3)^2} \Bigl (2 (n-1) [(n-2) p+n-4]+(p+3)^2 r^2 g(r)\Bigr ). \end{aligned}$$

In the case \(f(r)=r^{n-1}\exp (r^2/4)\) and \(h(r)=1\), we have

$$\begin{aligned} a(r)&=\left( e^{\frac{r^2}{4}} r^{n-1}\right) ^{\frac{2 (p+1)}{p+3}},\qquad b(r)=\frac{\left( 2 n+r^2-2\right) \left( e^{\frac{r^2}{4}} r^{n-1}\right) ^{\frac{2 (p+1)}{p+3}}}{(p+3) r},\\ c(r)&= \frac{\left( e^{\frac{r^2}{ 4}} r^{n-1}\right) ^{\frac{2 (p+1)}{p+3}} }{2 (p+3)^2 r^2} \Bigl ( 4 (n-1) [n+2-(n-2) p]\\&\qquad -2 (2n (p-1)-p+5)r^2-(p-1) r^4\Bigr ),\\ G(r)&= \frac{\left( e^{\frac{r^2}{4}} r^{n-1}\right) ^{\frac{2 (p+1)}{p+3}} }{4 (p+3)^3 r^3} \biggl ( 8 (n-1) [(n-2) p+n-4][n+2-(n-2) p] \\&\qquad -12 (n-1)^2 (p^2-1) r^2 -4(n-1)(p-1)(p+3)^2 r^2g(r) \\&\qquad -2(p+3)^3 r^3 g_r(r) -2(p-1)(p+3)^2 r^4g(r) \\&\qquad -2 r^4 \left( 3 n \left( p^2-1 \right) -(p-6)p+3 \right) -(p^2-1) r^6 \biggr ),\\ D(r)&=\frac{\left( e^{\frac{r^2 }{4}} r^{n-1}\right) ^{\frac{4 (p+1)}{p+3}} }{2 (p+3)^2 r^2} \Bigl ( 4 (n-1) [(n-2) p+n-4] +2 (2 n (p+1)-p+1)r^2\\&\qquad +2 (p+3)^2 r^2 g(r) +(p+1) r^4\Bigr ). \end{aligned}$$

Next, we study the case \(G(r)\equiv 0\). Letting \(f(r)=r^{n-1}\), \(h(r)=r^q\) with \(q \in \mathbb R\) and

$$\begin{aligned} g(r)= \frac{r^{-2 (n+1)}}{(p+3)^2} \left( C_1 (p+3)^2 r^{\frac{4 (2 n+p+q+1)}{p+3}}-(2 n+q-2) r^{2 n} [(n-2) p+n-4-q]\right) \end{aligned}$$

with \(C_1 \in \mathbb R\), we have

$$\begin{aligned} a(r)&=r^{ \frac{2 ((n-1)(p+1)-q)}{p+3}},\qquad b(r)=\frac{2 n+q-2}{p+3} r^{\frac{(2 n-3) (p+1)-2 (q+1)}{p+3}},\\ c(r)&= \frac{(2 n+q-2) [n+2-(n-2)p+2q]}{(p+3)^2} r^{\frac{2 [(n-2)p+n-4-q]}{p+3}},\\ G(r)&= 0,\qquad D(r)=C_1 r^{2 n-2}. \end{aligned}$$

Letting \(f(r)=r^{n-1}\exp (r^2/4)\), \(h(r)=r^q\) with \(q \in \mathbb R\) and

$$\begin{aligned} g(r)= & {} C_1 \exp \biggl (-\frac{(p-1) r^2}{2 (p+3)}\biggr ) r^{\frac{2 (-(n-1)(p-1)+2 q)}{p+3}} -\frac{p+1}{2(p+3)^2} r^2\\&+\,\frac{(-4 n(p+1)-(p-1)(q-2))}{2(p+3)^2} -\frac{2(2n+q-2)[(n-2)p+n-4-q]}{2(p+3)^2r^2}, \end{aligned}$$

we have

$$\begin{aligned} a(r)&=\left( \exp (r^2/4) r^{n-1}\right) ^{\frac{2 (p+1)}{p+3}} r^{-\frac{2 q}{p+3}},\\ b(r)&=\frac{ \left( \exp (r^2/4) r^{n-1}\right) ^{\frac{2 (p+1)}{p+3}} r^{-\frac{2 q}{p+3}-1} }{p+3}(r^2+2 n+q-2 ),\\ c(r)&= \frac{\left( \exp (r^2/4) r^{n-1}\right) ^{\frac{2 (p+1)}{p+3}} r^{-\frac{2 (p+q+3)}{p+3}} }{2 (p+3)^2} \Bigl (2 (2 n+q-2) [n+2-(n-2)p+2q],\\&\quad - (4 n (p-1)+(p-5) (q-2))r^2 -(p-1) r^4\Bigr ),\\ G(r)&= 0, \qquad D(r)=C_1 \exp (r^2/2) r^{2 n-2}. \end{aligned}$$

Appendix 2: Some properties of \(\mathcal X\)

In this appendix, we assume \(p>1\), (B1) and (B6), and we understand that \(\mathcal D\), \(\mathcal X\) and \(\mathcal L\) are the spaces defined in Sect. 3.

Lemma 9

The space \(\mathcal X\) coincides with the completion of \(C_0^\infty ((R',R))\) with respect to the norm \(\Vert \cdot \Vert _\mathcal X\).

Proof

Since \(C_0^\infty ((R',R))\subset \mathcal D\), it is enough to show that each element in \(\mathcal D\) is approximated by an element in \(C_0^\infty ((R',R))\). Let \(u \in \mathcal D\) and let \(\varepsilon >0\). We set \(C=\max _{R'\le r< R}|u(r)|\). We define \(\eta \in W^{1,\infty }(R',R)\) by \(\eta (r)= 0\) for \(R'< r\le \hat{\delta }\), \(\eta (r)= 1\) for \(\delta \le r<R\), and

$$\begin{aligned} \eta (r)=\frac{\int _{\hat{\delta }}^{r}\frac{ds}{f(s)}}{\int ^{\delta }_{\hat{\delta }}\frac{ds}{f(s)}} \quad {\mathrm{for}\,\, \hat{\delta }\le r\le \delta ,} \end{aligned}$$

where \(\hat{\delta },\delta \in (R',R)\) with \(\hat{\delta }< \delta \) are chosen to be

$$\begin{aligned} 2\int _{R'}^{\delta }\bigl (|u_r|^2+|g||u|^2\bigr )f\,dr<\varepsilon \quad \text {and}\quad \int _{\hat{\delta }}^{\delta }\frac{dr}{f(r)}>\frac{C^2}{\varepsilon }. \end{aligned}$$

Then we obtain

$$\begin{aligned} \int _{R'}^R&\bigl (|(\eta u)_r-u_r|^2+|g| |\eta u-u|^2\bigr )f\,dr\\&\le 2\int _{R'}^R|\eta (r)-1|^2 (|u_r|^2+ |g||u|^2\bigr )f(r)\,dr +2 \int _{R'}^R|\eta _r(r)|^2|u|^2f(r)\,dr\\&\le \varepsilon + C^2\biggl ( \int _{\hat{\delta }}^\delta \frac{dr}{f(r)} \biggr )^{-2} \int _{\hat{\delta }}^\delta \frac{dr}{f(r)} \le 2\varepsilon . \end{aligned}$$

By the standard argument with mollifiers, we can infer that our assertion holds.\(\square \)

Lemma 10

Let \(u\in \mathcal X\). Then \(u^+,\, u^-,\, |u|\in \mathcal X\).

Proof

Since \(u\in H^1_{\mathrm {loc}}(R',R)\), we have

$$\begin{aligned} (u^{+})_r=u_r\cdot 1_{\{ u>0\}} \quad \text {and}\quad (u^{-})_r=u_r\cdot 1_{\{ u<0\}}, \end{aligned}$$

where 1 is the characteristic function. Let \(u\in \mathcal X\). By the previous lemma, there exists \(\{u_k\}\subset C_0^\infty ((R',R))\) such that \(u_k\rightarrow u\) in \( \mathcal X\). We choose \(K\in C^\infty (\mathbb R)\) such that

$$\begin{aligned} K(t)= {\left\{ \begin{array}{ll} t&{} {\mathrm{for}\, t\ge 1,}\\ 0&{} {\mathrm{for}\, t\le 0,} \end{array}\right. } \quad 0\le K(t)\le t \quad \text {and}\quad 0\le K_t(t)\le 2\quad {\mathrm{for}\, t \in \mathbb R.} \end{aligned}$$

Let \(k,m \in \mathbb N\). We claim

$$\begin{aligned} \int _{R'}^{R}&\biggl |\biggl (\frac{1}{m}K(mu_k(r))\biggr )_r-(u^+)_r \biggr |^2f(r)\,dr + \int _{R'}^{R}|g(r)|\biggl |\frac{1}{m}K(mu_k)-u^+\biggr |^2f(r)\,dr\\&\le 2\int _{\{ r\,:\,0<u_k(r)<1/m\}}(u^{+}_k)_r^2f(r)\,dr +4\int _{R'}^{R}|u_{k,r}-u_r|^2f(r)\,dr \\&\quad +4\int _{\{u>0\}}|1_{\{u_k>0\}}-1|^2u_r(r)^2f(r)\,dr +4\int _{\{u<0\}}1_{\{u_k>0\}}u_r(r)^2f(r)\,dr\\&\quad +2\int _{\{ r\,:\,0<u_k(r)<1/m\}}|g(r)|u_k(r)^2f(r)\,dr +2\int _{R'}^{R}|g(r)|\,|u_k-u|^2f(r)\,dr. \end{aligned}$$

Once the claim was shown, choosing a suitable sequence \(\{m_k\}\), we can obtain \(\{ K(m_k u_k(r))/m_k \}\subset C_0^\infty ((R',R))\) which converges to u in \(\mathcal X\). We will show the claim. We have

$$\begin{aligned} \int _{R'}^{R}&\biggl |\biggl (\frac{1}{m}K(mu_k)\biggr )_r-(u^{+})_r \biggr |^2f(r)\,dr\\&\le 2\int _{R'}^{R}|K_r(mu_k(r))(u_k)_r-(u_k^{+})_r|^2f(r)\,dr +2\int _{R'}^{R}|(u_k^{+})_r-(u^{+})_r|^2f(r)\,dr\\&\le 2\int _{\{ r\,:\,0<u_k(r)<1/m\}}(u^{+}_k)_r^2f(r)\,dr\\&\quad +2\int _{R'}^{R}| (u_{k,r}-u_r)1_{\{u_k>0\}} +u_r( 1_{\{u_k>0\}}-1_{\{u>0\}}) |^2f(r)\,dr\\&\le 2\int _{\{ r\,:\,0<u_k(r)<1/m\}}(u^{+}_k)_r^2f(r)\,dr +4\int _{R'}^{R}|u_{k,r}-u_r|^2f(r)\,dr\\&\quad +4\int _{\{u>0\}}|1_{\{u_k>0\}}-1|^2u_r(r)^2f(r)\,dr +4\int _{\{u<0\}}1_{\{u_k>0\}}u_r(r)^2f(r)\,dr. \end{aligned}$$

Here, we used \(\int _{\{u=0\}}u_r(r)^2f(r)\,dr=0\). On the other hand, we have

$$\begin{aligned} \int _{R'}^{R}&|g(r)|\biggl |\frac{1}{m}K(mu_k)-u^+\biggr |^2f(r)\,dr\\&\le 2\int _{R'}^{R}|g(r)|\biggl |\frac{1}{m}K(mu_k)-u_k^{+}\biggr |^2f(r)\,dr +2\int _{R'}^{R}|g(r)|\,|u_k^{+}-u^{+}|^2f(r)\,dr\\&\le 2\int _{\{ r\,:\,0<u_k(r)<1/m\}}|g(r)|u_k(r)^2f(r)\,dr +2\int _{R'}^{R}|g(r)|\,|u_k-u|^2f(r)\,dr. \end{aligned}$$

Hence we have shown the claim, and we finish our proof. \(\square \)

Now, we also assume (B8). We give the following subsolution estimate.

Proposition 6

Let \(u\in \mathcal X\) satisfy

$$\begin{aligned} \int _{R'}^{\bar{R}}(u_r\varphi _r+gu\varphi )f\, dr \le \int _{R'}^{\bar{R}}|u|^{p-1}u\varphi hf\, dr \quad {\mathrm{for each}\, \varphi \in \mathcal {X} \mathrm{with}\, \varphi \ge 0.} \end{aligned}$$

Then \(\sup _{r\in (R',(R'+\bar{R})/2]}u^+(r)<\infty \).

Lemma 11

Let \(u\in \mathcal X\) and let z be a measurable function such that

$$\begin{aligned} \int _{R'}^{\bar{R}}|z^+|^{\frac{\beta +1}{\beta -1}}hf\,dr<\infty \end{aligned}$$

with some \(\beta \in (1,\bar{p})\). Assume

$$\begin{aligned} \int _{R'}^{\bar{R}}(u_r\varphi _r+gu\varphi )f\, dr \le \int _{R'}^{\bar{R}}zu\varphi hf\, dr \quad {\mathrm{for\, each}\,\, \varphi \in \mathcal {X}\quad \mathrm{with}\quad \varphi \ge 0.} \end{aligned}$$

Then \(\sup _{r\in (R',(R'+\bar{R})/2]}u^+(r)<\infty \).

Proof

We follow the argument in [46, Theorem 2.26]. Let \(1/\sqrt{C_1}\) be the infimum value in (3.3), and set

$$\begin{aligned} \gamma =\max \{\beta ,q\}, \quad \bar{z}=z^+ +\frac{|g^-|}{h} \quad \text {and}\quad C_2= \biggl (\int _{R'}^{R'+2t} |\bar{z}|^{\frac{\gamma +1}{\gamma -1}}hf\,dr \biggr )^{\frac{\gamma -1}{\gamma +1}}. \end{aligned}$$

Set also

$$\begin{aligned} \sigma =\frac{(\bar{p}+1)(\gamma -1)}{2(\bar{p}-\gamma )} \quad \text {and}\quad C_3=\max \biggl \{\max _{R'+t\le r\le R'+2t}\frac{144C_1}{h(r)}, \; (12C_1C_2)^{\sigma +1}\biggr \}. \end{aligned}$$

We claim that for each \(l>0\), \(s>0\) and \(r_1, r_2\) with \((R'+\bar{R})/2 \le r_1< r_2\le \bar{R}\), there holds

$$\begin{aligned} \biggl (\int _{R'}^{r_1}\bigl |u| u_{l}|^{s}\bigr |^{\bar{p}+1}hf\,dr \biggr )^{\frac{2}{\bar{p}+1}}\le C_3\biggl (\frac{s+1}{(r_2-r_1)^2}+(s+1)^{\sigma +1}\biggr ) \int _{R'}^{r_2}\bigl |u| u_{l}|^{s}\bigr |^2hf\,dr,\nonumber \\ \end{aligned}$$
(7.16)

where

$$\begin{aligned} u_{l}(r)=\max \{0,\,\min \{u(r),l\}\}. \end{aligned}$$

We will show the claim. Let \(l>0\), \(s>0\) and \((R'+\bar{R})/2 \le r_1< r_2\le \bar{R}\). Let \(\eta \in \mathcal D\). Since we can show \(\eta ^2u| u_{l}|^{2s}\in \mathcal X\) by a similar proof of the previous lemma, we have

$$\begin{aligned}&\int _{R'}^{\bar{R}}z\eta ^2u^2| u_{l}|^{2s}hf\,dr\\&\quad \ge \int _{R'}^{\bar{R}} \bigl (u_r(2\eta \eta _ru| u_{l}|^{2s}+\eta ^2u_r| u_{l}|^{2s} +2s\eta ^2u| u_{l}|^{2s-2}u_{l}u_{l,r}) +g\eta ^2u^2| u_{l}|^{2s}\bigr )f\, dr \\&\quad \ge \int _{R'}^{\bar{R}} \biggl (\frac{1}{2}\eta ^2|u_r|^2| u_{l}|^{2s} -2\eta _r^2u^2| u_{l}|^{2s} +2s\eta ^2| u_{l,r}|^2| u_{l}|^{2s}+g\eta ^2u^2| u_{l}|^{2s}\biggr )f\,dr, \end{aligned}$$

which yields

$$\begin{aligned}&\int _{R'}^{\bar{R}}\biggl ( \frac{1}{2}\eta ^2|u_r|^2| u_{l}|^{2s} +2s\eta ^2|u_{l,r}|^2| u_{l}|^{2s}+g^+\eta ^2u^2| u_{l}|^{2s} \biggr )f\,dr\\&\qquad \le \int _{R'}^{\bar{R}} \bigl (2|\eta _r|^2u^2|u_{l}|^{2s}f+\bar{z}\eta ^2u^2| u_{l}|^{2s}hf\bigr ) \,dr. \end{aligned}$$

Noting

$$\begin{aligned} \bigl | \bigl (\eta u| u_{l}|^s\bigr )_r\bigr |^2 \le 3|\eta _r|^2u^2| u_{l}|^{2s}+3\eta ^2| u_r|^2| u_{l}|^{2s} +3s^2\eta ^2| u_{l,r}|^2| u_{l}|^{2s} \end{aligned}$$

and \(\eta u| u_{l}|^{s} \in \mathcal {X}\), we have

$$\begin{aligned} \biggl (\int _{R'}^{\bar{R}} \bigl |\eta u| u_{l}|^{s}\bigr |^{\bar{p}+1}hf\,dr\biggr )^{\frac{2}{\bar{p}+1}}&\le C_1\int _{R'}^{\bar{R}} \bigl (\bigl |\bigl (\eta u| u_{l}|^{s}\bigr )_r\bigr |^2 +g^{+}\bigl |\eta u|u_{l}|^s\bigr |^2\bigr )f\,dr\\&\le 6(s+1)C_1\int _{R'}^{\bar{R}} \bigl (3|\eta _r|^2u^2|u_{l}|^{2s}f +\bar{z}\bigl |\eta u|u_{l}|^{s}\bigr |^2hf\bigr )\,dr. \end{aligned}$$

For each \(\varepsilon >0\), we have

$$\begin{aligned}&\int _{R'}^{\bar{R}} \bigl (3|\eta _r|^2u^2|u_{l}|^{2s}f +\bar{z}\bigl |\eta u|u_{l}|^{s}\bigr |^2hf\bigr )\,dr\le 3 \int _{R'}^{\bar{R}}| \eta _r|^2u^2| u_{l}|^{2s}f\,dr\\&\quad +C_2 \varepsilon ^2\biggl (\int _{R'}^{\bar{R}} \bigl |\eta u| u_{l}|^{s}\bigr |^{\bar{p}+1}hf\,dr \biggr )^{\frac{2}{\bar{p}+1}} +C_2 \varepsilon ^{-2\sigma } \int _{R'}^{\bar{R}}\bigl |\eta u| u_{l}|^{s}\bigr |^2hf\,dr. \end{aligned}$$

Choosing \(\varepsilon ^{-2}=12(s+1)C_1C_2\) and using two inequalities above, we obtain

$$\begin{aligned} \biggl (\int _{R'}^{\bar{R}} \bigl |\eta u| u_{l}|^{s}\bigr |^{\bar{p}+1}hf\,dr\biggr )^{\frac{2}{\bar{p}+1}}&\le 36(s+1)C_1\int _{R'}^{\bar{R}}|\eta _r|^2 u^2| u_{l}|^{2s}f\,dr\\&\quad +(12(s+1)C_1C_2)^{\sigma +1} \int _{R'}^{\bar{R}}\bigl |\eta u| u_{l}|^{s}\bigr |^2hf\,dr. \end{aligned}$$

Now, letting \(\eta \) satisfy

$$\begin{aligned} \eta (r)= {\left\{ \begin{array}{ll} 1&{} \text {for}\, R'\le r\le r_1,\\ 0&{} \text {for}\, r\ge r_2, \end{array}\right. } \quad \text {and}\quad |\eta _r(r)|\le \frac{2}{r_2-r_1}, \end{aligned}$$

we can infer that claim (7.16) holds. We set

$$\begin{aligned} \chi =\frac{\bar{p}+1}{2} \quad \text {and}\quad t=\frac{\bar{R}-R'}{2}. \end{aligned}$$

Applying (7.16) with \(m\in \mathbb N\), \(s=\chi ^m-1\), \(r_1=R'+(1+2^{-m})t\) and \(r_2=R'+(1+2^{-m+1})t\), and using the Lebesgue convergence theorem, we can infer

$$\begin{aligned}&\biggl (\int _{R'}^{R'+(1+2^{-m})t} |u^+|^{2\chi ^{m+1}}hf\,dr\biggr )^{\frac{1}{2\chi ^{m+1}}}\\&\quad \le \biggl [C_3\biggl ( \frac{(4\chi )^{m}}{t^2} + \chi ^{m(\sigma +1)}\biggr )\biggr ]^{\frac{1}{2\chi ^{m}}} \biggl (\int _{R'}^{R'+(1+2^{-m+1})t}| u^+|^{2\chi ^{m}}hf\,dr \biggr )^{\frac{1}{2\chi ^{m}}}\\&\quad \le \biggl [ C_3\Bigl (\frac{1}{t^2}+1\Bigr )C_4^{m} \biggr ]^{\frac{1}{2\chi ^{m}}} \biggl (\int _{R'}^{R'+(1+2^{-m+1})t}| u^+|^{2\chi ^{m}}hf\,dr\biggr )^{\frac{1}{2\chi ^{m}}}, \end{aligned}$$

where \(C_4=\max \{4\chi ,\chi ^{\sigma +1}\}\). So we have

$$\begin{aligned}&\biggl (\int _{R'}^{R'+(1+2^{-m})t} |u^+|^{2\chi ^{m+1}}hf\,dr\biggr )^{\frac{1}{2\chi ^{m+1}}}\\&\quad \le \biggl (C_3\Bigl (\frac{1}{t^2}+1\Bigr )\biggr )^{\frac{1}{2\chi } \sum _{i=1}^{m}\frac{1}{\chi ^{i-1}}}C_4^{\frac{1}{2\chi } \sum _{i=1}^{m}\frac{i}{\chi ^{i-1}}} \biggl (\int _{R'}^{R'+2t}| u^+|^{2\chi }hf\,dr\biggr )^{\frac{1}{2\chi }}\\&\quad \le \biggl (C_3\Bigl (\frac{1}{t^2}+1\Bigr )\biggr )^{\frac{1}{2(\chi -1)} }C_4^{\frac{1}{2(\chi -1)^2}} \biggl (\int _{R'}^{\bar{R}} |u^+|^{\bar{p}+1}hf\,dr\biggr )^{\frac{1}{\bar{p}+1}}. \end{aligned}$$

Letting \(m\rightarrow \infty \), we can find that our assertion holds.\(\square \)

Proof of Proposition 6

First, we note that

$$\begin{aligned} \int _{R'}^{\bar{R}}|u|^{p-1}u\varphi hf\, dr \le \int _{R'}^{\bar{R}}(u^+)^{p-1}u\varphi hf\, dr \quad \text {for each}\,\, \varphi \in \mathcal {X} \,\,\mathrm{with}\,\, \varphi \ge 0. \end{aligned}$$

In the case of \(p<\bar{p}\), applying Lemma 11 with \(z=(u^+)^{p-1}\) and \(\beta =p\), we can see that our assertion holds. So we consider the case \(p=\bar{p}\). We set \(s=(\bar{p}-1)/2\). Let \(l>0\). Using the notations is Lemma 11 and noting \(\int _{R'}^{\bar{R}}|u|u_l|^s|^{\bar{p}+1}hf\,dr<\infty \), we have

$$\begin{aligned}&\biggl (\int _{R'}^{\bar{R}} \bigl |\eta u| u_{l}|^{s}\bigr |^{\bar{p}+1}\biggr )^{\frac{2}{\bar{p}+1}}\le C_1\int _{R'}^{\bar{R}} \bigl (\bigl |\bigl (\eta u| u_{l}|^{s}\bigr )_r\bigr |^2 +g^{+}\eta ^2u^2| u_{l}|^{2s}\bigr )f\,dr\\&\quad \le 18(s+1)C_1\int _{R'}^{\bar{R}}|\eta _r|^2u^2| u_{l}|^{2s}f\,dr +6(s+1)C_1\int _{R'}^{\bar{R}}\bar{z}\eta ^2u^2| u_{l}|^{2s}hf\,dr\\&\quad \le 18(s+1)C_1\int _{R'}^{\bar{R}}|\eta _r|^2u^2| u_{l}|^{2s}f\,dr\\&\qquad +6(s+1)C_1\biggl (\int _{R'}^{\bar{R}}|\bar{z}|^{\frac{\bar{p}+1}{\bar{p}-1}}hf\,dr\biggr )^{\frac{\bar{p}-1}{\bar{p}+1}} \biggl (\int _{R'}^{\bar{R}}\bigl |\eta u| u_{l}|^{s}\bigr |^{\bar{p}+1}hf\,dr\biggr )^{\frac{2}{\bar{p}+1}}. \end{aligned}$$

We choose \(\delta >0\) satisfying

$$\begin{aligned} 6(s+1)C_1 \biggl (\int _{R'}^{R'+2\delta }| \bar{z}|^{\frac{\bar{p}+1}{\bar{p}-1}}hf\,dr \biggr )^{\frac{\bar{p}-1}{\bar{p}+1}} <\frac{1}{2}. \end{aligned}$$

Then we have

$$\begin{aligned}&\biggl (\int _{R'}^{R'+2\delta }\bigl |\eta u| u_{l}|^{s}\bigr |^{\bar{p}+1}\biggr )^{\frac{2}{\bar{p}+1}} \le 36(s+1)C_1\int _{R'}^{R'+2\delta }|\eta _r|^2u^2| u_{l}|^{2s}f\,dr\\&\qquad \qquad \le \max _{r_1\le r\le r_2} \frac{72(\bar{p}+1)C_1}{\delta ^2 h(r)}\int _{R'}^{R'+2\delta } |u^+|^{\bar{p}+1}hf\,dr. \end{aligned}$$

Letting \(l\rightarrow \infty \), we obtain

$$\begin{aligned} \int _{R'}^{R'+\delta }| u^+|^{\frac{(\bar{p}+1)^2}{2}}hf\,dr<\infty . \end{aligned}$$

Since h, f and u are continuous in \((R',R)\), we have \(\int _{R'}^{\bar{R}}| u^+|^{\frac{(\bar{p}+1)^2}{2}}hf\,dr<\infty \). Choosing \(\beta \in (1,\bar{p})\) such that

$$\begin{aligned} (\bar{p}-1)\frac{\beta +1}{\beta -1}\le \frac{(\bar{p}+1)^2}{2}, \end{aligned}$$

recalling \(\bar{p}=p\), and applying Lemma 11 with \(z=(u^+)^{\bar{p}-1}\), we can infer that our assertion holds. \(\square \)

Appendix 3: Proof of Theorem 8

It is enough to show that the unique positive solution \({\bar{u}}\) is a nondegenerate critical point of I in the case \(R<\infty \) and \(G\equiv 0\) in \((R',R)\); see Remark 19. For each \(\delta >0\), we define \(g_\delta \), \(h_\delta \), \(a_\delta \), \(b_\delta \), \(c_\delta \) and \(J_\delta \) by (4.6), (4.7) and (5.2) with \(\gamma \equiv 1\); see also (5.9). We also define \(S_\delta \) as the set of all positive solutions of

$$\begin{aligned} \left\{ \begin{array}{ll} u_{rr}(r)&{}+\frac{f_r(r)}{f(r)}u_r+g_\delta (r)u+h_\delta (r)u^p=0,\quad R'<r<R, \\ u(R')&{}=0, \quad u(R)=0. \end{array}\right. \end{aligned}$$
(7.17)

We can see that \({\bar{u}}\) is a positive solution of (7.17) for each \(\delta >0\).

Since we can prove the next lemma as in Lemma 5, we omit its proof.

Lemma 12

It holds that

$$\begin{aligned} \inf _{0< \delta <1}\inf _{u\in S_\delta }\Vert u\Vert _\mathcal X>0. \end{aligned}$$

Lemma 13

There exist \(\delta _{0}\in (0,1)\) such that

$$\begin{aligned} \sup _{0<\delta <\delta _{0}} \sup _{u\in S_\delta } \mathop {\max \phantom {p}}_{R'\le r\le R}u(r)<\infty . \end{aligned}$$
(7.18)

Proof

Suppose that the conclusion does not hold. Then there exist \(\{\delta _m\}\subset (0,1)\) with \(\delta _m\rightarrow 0\) and \(\{u_m\}\subset C([R',R])\cap C^2((R',R))\) such that \(u_m \in S_{\delta _m}\) for each \(m\in \mathbb N\) and \(\theta _m\equiv \max _{R'\le r\le R}u_m(r)\rightarrow \infty \) as \(m\rightarrow \infty \). For each \(m\in \mathbb N\), we choose \(r_m\in (R',R)\) with \(\theta _m=u_m(r_m)\) and we define \(\{v_m\}\), \(\{L_m\}\) and \(\{\beta _m\}\) as in the proof of Lemma 6. Without loss of generality, we may assume that \(r_m\rightarrow r_*\in [R',R]\), \(\lim _{m\rightarrow \infty }\theta _m^{(p-1)/2}(R'-r_m)\) exists in \([-\infty ,0]\) and \(\lim _{m\rightarrow \infty }\theta _m^{(p-1)/2}(R-r_m)\) exists in \([0,\infty ]\). Let \(L(\subset \mathbb R)\) be the limit closed interval of \(\{L_m\}\). We can see that L is unbounded and \(0 \in L\). For each \(m \in \mathbb N\), we have \(v_m(0)=1\), \(v_{m,t}(0)=0\) and

$$\begin{aligned} v_{m,tt}(t)&+\frac{(f(\beta _m(t)))_t}{f(\beta _m(t))} v_{m,t}(t) +(1+\delta _m)h(\beta _m(t))v_m(t)^p\\&-\theta _m^{-p+1}\bigl [ g(\beta _m(t))+\delta _m h(\beta _m(t))\bar{u}(\beta _m(t))^{p-1}\bigr ] v_m(t)=0 \end{aligned}$$

for each \(t \in L_m\), and hence we have

$$\begin{aligned} v_{m,t}(t)f(\beta _m(t))&=\int _{0}^{t}f(\beta _m(s)) \Bigl [ -(1+\delta _m)h(\beta _m(s))v_m(s)^p\\&\quad +\bigl [ g(\beta _m(s))+\delta _m h(\beta _m(s)) \bar{u}(\beta _m(s))^{p-1}\bigr ]\theta _m^{1-p}v_m(s)\Bigr ] ds \end{aligned}$$

for each \(t \in L_m\). We recall \(R<\infty \), \(f,h\in C^2([R',R])\), \(g\in C([R',R])\) and \(f>0\) on \([R',R]\). From

$$\begin{aligned} \sup _{t\in L_m} \biggl | \frac{(f(\beta _m(t)))_t}{f(\beta _m(t))} \biggr | \le \frac{\max _{r \in [R',R]}|f_r(r)|}{ \min _{r\in [R',R]}f(r)}\cdot \theta _m^\frac{-(p-1)}{2}\rightarrow 0\quad {\mathrm{as}\,\, m\rightarrow \infty ,} \end{aligned}$$

and the two equalities above, we can see

$$\begin{aligned} \mathop {\varlimsup \phantom {p}}_{m\rightarrow \infty } \sup _{t\in K}|v_{m,t}(t)|<\infty \quad \text {and}\quad \mathop {\varlimsup \phantom {p}}_{m\rightarrow \infty } \sup _{t\in K}|v_{m,tt}(t)|<\infty \end{aligned}$$

for each bounded closed interval \(K\subset L\) with \(0 \in K\). Taking a subsequence \(\{v_{m_i}\}\) of \(\{v_m\}\), we can infer that there exists \(v\in C^2(L)\) such that \(\Vert v_{m_i}-v\Vert _{C^1(K)}\rightarrow 0\) for each bounded closed interval \(K\subset L\) with \(0 \in K\), v is nonnegative on L, and

$$\begin{aligned}\left\{ \begin{array}{ll} &{}v_{tt}(t)+h(r_*)|v(t)|^{p-1}v(t)=0 \quad \text {for each}\,\, t\in L,\\ &{}v(0)=1, \quad v_{t}(0)=0. \end{array}\right. \end{aligned}$$

However, since L is unbounded, v must be negative somewhere, which is a contradiction. Thus we have shown our assertion. \(\square \)

Lemma 14

It holds that

$$\begin{aligned} \mathop {\lim \phantom {p}}_{\delta \rightarrow 0} \sup _{u\in S_\delta }\Vert u-\bar{u}\Vert _{C^{1}([R',R])}=0. \end{aligned}$$

Proof

For each \(\delta \in (0,\delta _0)\), \(u\in S_\delta \) and \(r_u \in (R',R)\) with \(u_r(r_u)=0\), we have

$$\begin{aligned} f(r)|u_r(r)|&\le \biggl |\int _{r_u}^{r}\bigl ( h_\delta (s)u(s)^p+|g_\delta (s)| \bar{u} (s)^{p-1}u(s)\bigr )f(s)\,ds\biggr | \quad \text {for each}\,\, r\in (R',R), \end{aligned}$$

So we have

$$\begin{aligned} \sup _{\delta \in (0,\delta _0)}\sup _{u \in S_\delta } \Vert u\Vert _{C^1([R',R])}<\infty , \end{aligned}$$

and hence

$$\begin{aligned} \sup _{\delta \in (0,\delta _0)}\sup _{u \in S_\delta }\Vert u\Vert _{C^2([R',R])} <\infty . \end{aligned}$$

Hence by similar arguments as in the proof of Lemma 7, we can infer that our assertion holds.\(\square \)

Proof of Theorem 8

As already said, it is enough to show that in the case of \(R<\infty \) and \(G\equiv 0\), \({\bar{u}}\) is a nondegenerate critical point of I. From \((d/dr)J(r;\bar{u})=G(r)\bar{u}(r)^2=0\) for each \(r \in (R',R)\), we have

$$\begin{aligned} J(r;\bar{u})=\frac{1}{2}a(R)\bar{u}_r(R)^2>0 \quad {\mathrm{for\, each}\,\, r\in [R',R].} \end{aligned}$$

Letting \(\delta \in (0,\delta _0)\) be sufficiently small, we have

$$\begin{aligned} \inf _{u\in S_\delta } \inf _{r \in [R',R]}J_\delta (r;u)>0 \end{aligned}$$

by the previous lemma. By a similar proof of that of Theorem 1, we can see that \({\bar{u}}\) is the unique positive solution of (7.17). Hence, by a similar proof of that of Theorem 3, we can find that \({\bar{u}}\) is a nondegenerate critical point of I. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shioji, N., Watanabe, K. Uniqueness and nondegeneracy of positive radial solutions of \(\mathbf {div\,{\varvec{(}}{\varvec{\rho }} \nabla u{\varvec{)}} +{\varvec{\rho }}{\varvec{(}}-gu+hu^p{\varvec{)}}=0}\) . Calc. Var. 55, 32 (2016). https://doi.org/10.1007/s00526-016-0970-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-016-0970-2

Mathematics Subject Classification

Navigation