Skip to main content
Log in

Optimal decay of extremals for the fractional Sobolev inequality

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We obtain the sharp asymptotic behavior at infinity of extremal functions for the fractional critical Sobolev embedding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Observe that if \(\theta >q\), then \(\alpha <0\).

  2. Here we use that

    $$\begin{aligned} G_{\alpha ,M}(t)\ge \frac{p}{p+\alpha -1}\, t\,\min \{t,\,M\}^\frac{\alpha -1}{p}. \end{aligned}$$
  3. As a set E occuring in the definition \(\widetilde{D}^{s,p}(\overline{B_R}^{\,c})\) one can take for example \(E=\overline{B}_{\sqrt{\theta }\,R}^c\).

  4. We use the change of variables \(\tau =\frac{2\,\varrho }{(1-\varrho )^2}\,(1-t).\)

References

  1. Almgren, F.J., Lieb, E.: Symmetric decreasing rearrangement is sometimes continuous. J. Am. Math. Soc. 2, 683–773 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andreu, F., Mazón, J.M., Rossi, J.D., Toledo, J.: A nonlocal \(p\)-Laplacian evolution equation with nonhomogeneous Dirichlet boundary conditions. SIAM J. Math. Anal. 40, 1815–1851 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (1976)

    MathSciNet  MATH  Google Scholar 

  4. Brasco, L., Franzina, G.: Convexity properties of Dirichlet integrals and Picone-type inequalities. Kodai Math. J. 37, 769–799 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brasco, L., Parini, E.: The second eigenvalue of the fractional \(p\)-Laplacian. Adv. Calc. Var. (2016). doi:10.1515/acv-2015-0007

  6. Brasco, L., Lindgren, E., Parini, E.: The fractional Cheeger problem. Interfaces Free Bound. 16, 419–458 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, W., Li, C., Ou, B.: Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59, 330–343 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cordero-Erausquin, D., Nazaret, B., Villani, C.: A mass-transportation approach to sharp Sobolev and Gagliardo–Nirenberg inequalities. Adv. Math. 182, 307–332 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cotsiolis, A., Tavoularis, N.: Best constants for Sobolev inequalities for higher order fractional derivatives. J. Math. Anal. Appl. 295, 225–236 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Damascelli, L., Merchán, S., Montoro, L., Sciunzi, B.: Radial symmetry and applications for a problem involving the \(-\Delta _p(\cdot )\) operator and critical nonlinerity in \(\mathbb{R}^N\). Adv. Math. 265, 313–335 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Di Castro, A., Kuusi, T., Palatucci, G.: Nonlocal Harnack inequalities. J. Funct. Anal. 267, 1807–1836 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fiscella, A., Servadei, R., Valdinoci, E.: Density properties for fractional Sobolev spaces. Ann. Acad. Sci. Fenn. Math. 40, 235–253 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Federer, H., Fleming, W.H.: Normal and integral currents. Ann. Math. 72, 458–520 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  15. Frank, R.L., Seiringer, R.: Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255, 3407–3430 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gigli, N., Mosconi, S.: The abstract Lewy–Stampacchia inequality and applications. J. Math. Pures Appl. 104, 258–275 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guedda, M., Veron, L.: Local and global properties of solutions of quasilinear elliptic equations. J. Differ. Equ. 76, 159–189 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Iannizzotto, A., Liu, S., Perera, K., Squassina, M.: Existence results for fractional \(p\)-Laplacian problems via Morse theory. Adv. Calc. Var. (2015) (to appear)

  19. Iannizzotto, A., Mosconi, S., Squassina, M.: Global Hölder regularity for the fractional \(p\)-Laplacian. Rev. Mat. Iberoamericana. (2016). http://arxiv.org/abs/1411.2956 (to appear)

  20. Iannizzotto, A., Mosconi, S., Squassina, M.: A note on global regularity for the weak solutions of fractional \(p\)-Laplacian equations. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27, 15–24 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ishii, H., Nakamura, G.: A class of integral equations and approximation of \(p\)-Laplace equations. Calc. Var. Partial Differ. Equ. 37, 485–522 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kuusi, T., Mingione, G., Sire, Y.: Nonlocal equations with measure data. Commun. Math. Phys. 337, 1317–1368 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lieb, E.H.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. 118, 349–374 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lieb, E.H., Loss, M.: Analysis, 2nd edn. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence (2001)

  25. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoamericana 1, 145–201 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lindgren, E., Lindqvist, P.: Fractional eigenvalues. Calc. Var. Partial Differ. Equ. 49, 795–826 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Maz’ja, V.G.: Classes of regions and imbedding theorems for function spaces. Soviet Math. Dokl. 1, 882–885 (1960)

    MathSciNet  Google Scholar 

  28. Maz’ya, V., Shaposhnikova, T.: On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces. J. Funct. Anal. 195, 230–238 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mosconi, S., Perera, K., Squassina, M., Yang, Y.: On the Brezis–Nirenberg problem for the fractional \(p\)-Laplacian (2015). http://arxiv.org/abs/1508.00700 (preprint)

  30. Rosen, G.: Minimal value for \(c\) in the Sobolev inequality. SIAM J. Appl. Math. 21, 30–33 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  31. Servadei, R., Valdinoci, E.: The Brezis–Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367, 67–102 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sciunzi, B.: Classification of positive \({\cal D}^{1, p}(\mathbb{R}^N)-\) (2015). http://arxiv.org/abs/1506.03653 (preprint)

  33. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  34. Vetois, J.: priori estimates and application to the symmetry of solutions for critical \(p\)-Laplace equations. J. Differ. Equ. 260, 149–161 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We warmly thank Yannick Sire for some informal discussions on the subject of this paper. We owe Remark 1.2 to the kind courtesy of an anonymous referee, we wish to thank him. This research has been partially supported by Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (INdAM) and by Agence Nationale de la Recherche, through the project ANR-12-BS01-0014-01 Geometrya. Part of this paper was written during a visit of S. M. and M. S. in Marseille in March 2015. The I2M and FRUMAM institutions are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Squassina.

Additional information

Communicated by L. Ambrosio.

Appendix A: Power functions

Appendix A: Power functions

We have the following result on power functions.

Lemma A.1

Let \(0<(N-\textit{sp})/p<\beta <N/(p-1)\). For every \(R>0\), the function \(x\mapsto |x|^{-\beta }\) belongs to \(\widetilde{D}^{s,p}(\overline{B_R}^{\,c})\).

Proof

A direct computation shows that \(x\mapsto |x|^{-\beta }\) belongs to \(L^{p-1}_{\mathrm {loc}}(\mathbb {R}^N)\cap L^{p^*}(B_R^c)\), when \(\beta \) is as in the statement. We take \(r<R\), then \(E=\overline{B_r}^{\,c}\supset \overline{B_R}^{\,c}\) and we need to show

$$\begin{aligned} \Big [|x|^{-\beta }\Big ]_{W^{s,p}(B_r^c)}<+\infty ,\quad \text {for }\,\, \frac{N-\textit{sp}}{p}<\beta . \end{aligned}$$
(A.1)

We compute in polar coordinates

$$\begin{aligned}&\int _{B_r^c\times B_r^c}\frac{||x|^{-\beta }-|y|^{-\beta }|^p}{|x-y|^{N+\textit{sp}}}\, dx\, dy\\&\quad = \int _{\mathbf {S}^{N-1}\times \mathbf {S}^{N-1}}\int _{r}^{+\infty }\int _r^{+\infty }\frac{|\varrho ^{-\beta }-t^{-\beta }|^p\,\varrho ^{N-1}\,t^{N-1}}{|\varrho \,\omega _1-t\,\omega _2|^{N+\textit{sp}}}\, d\varrho \, dt\, d\omega _1\, d\omega _2\\&\quad =2\int _{r}^{+\infty }\frac{\varrho ^{-\beta \, p}\,\varrho ^{2\,N-2}}{\varrho ^{N+\textit{sp}}}\int _r^{\varrho }\left| 1-\left( \frac{t}{\varrho }\right) ^{-\beta }\right| ^p\\&\qquad \times \, \int _{\mathbf {S}^{N-1}\times \mathbf {S}^{N-1}}\frac{d\omega _1\, d\omega _2}{|\omega _1-(t\,\omega _2)/\varrho |^{N+\textit{sp}}}\left( \frac{t}{\varrho }\right) ^{N-1}\, dt\, d\varrho \\&\quad =2\int _r^{+\infty }\frac{\varrho ^{-\beta \, p}\,\varrho ^{2\,N-1}}{\varrho ^{N+\textit{sp}}}\int _{r/\varrho }^1|1-\xi ^{-\beta }|^p\,\xi ^{N-1}\int _{\mathbf {S}^{N-1}\times \mathbf {S}^{N-1}}\frac{d\omega _1\, d\omega _2}{|\omega _1-\xi \,\omega _2|^{N+\textit{sp}}}\, d\xi \, d\varrho . \end{aligned}$$

Let us now prove that for \(0<\xi <1\) it holds

$$\begin{aligned} \int _{\mathbf {S}^{N-1}\times \mathbf {S}^{N-1}}\frac{d\omega _1\, d\omega _2}{|\omega _1-\xi \,\omega _2|^{N+\textit{sp}}}\le \frac{C}{(1-\xi )^{1+\textit{sp}}}. \end{aligned}$$

Without loss of generality, we may assume that \(\xi \ge 1/2\), since for \(0<\xi <1/2\) the integral is uniformly bounded. By rotational invariance, we have

$$\begin{aligned} \int _{\mathbf {S}^{N-1}\times \mathbf {S}^{N-1}}\frac{d\omega _1\, d\omega _2}{|\omega _1-\xi \,\omega _2|^{N+\textit{sp}}}= |\mathbf {S}^{N-1}|\int _{\mathbf {S}^{N-1}}\frac{d\omega _2}{|\mathbf{e}_1-\xi \,\omega _2|^{N+\textit{sp}}}, \end{aligned}$$

where \(\mathbf{e}_1=(1,0,\dots ,0)\). By changing variable \(\omega _2=(t,z)\) with

$$\begin{aligned} t=\pm \sqrt{1-|z|^2},\quad z\in B_1'\subset \mathbb {R}^{N-1}, \end{aligned}$$

we therefore get (the constant C may vary from a line to another)

$$\begin{aligned} \int _{\mathbf {S}^{N-1}}\frac{d\omega _2}{|\mathbf{e}_1-\xi \,\omega _2|^{N+\textit{sp}}}&= \int _{\mathbf {S}^{N-1}{\setminus }B_1(\mathbf{e_1})}\frac{d\omega _2}{|\mathbf{e}_1-\xi \,\omega _2|^{N+\textit{sp}}}+\int _{\mathbf {S}^{N-1}\cap B_1(\mathbf{e_1})}\frac{d\omega _2}{|\mathbf{e}_1-\xi \,\omega _2|^{N+\textit{sp}}}\\&\le C\left( 1+ \int _{B_1'}\frac{dz}{((1-\xi \, t)^2+\xi ^2\,|z|^2)^{\frac{N+\textit{sp}}{2}}}\right) \\&\le C\left( 1+\int _{B_1'}\frac{dz}{((1-\xi )^2+\xi ^2\,|z|^2)^{\frac{N+\textit{sp}}{2}}} \right) \\&\le C\left( 1+\frac{1}{(1-\xi )^{1+\textit{sp}}}\int _{B_{\frac{\xi }{1-\xi }}'}\frac{1}{ (1+|y|^2)^{\frac{N+\textit{sp}}{2}}}dy\right) \\&\le C\left( 1+\frac{1}{(1-\xi )^{1+\textit{sp}}}\int _{\mathbb {R}^{N-1}}\frac{1}{ (1+|y|^2)^{\frac{N+\textit{sp}}{2}}}dy\right) \end{aligned}$$

which proves the claim. Taking into account that for \(0< \xi <1\) it also holds

$$\begin{aligned} \frac{|1-\xi ^{-\beta }|^p}{|1-\xi |^{1+\textit{sp}}}\le C\,(\xi ^{-\beta \, p}+|1-\xi |^{p\,(1-s)-1}) \end{aligned}$$

we therefore get

$$\begin{aligned} \Big [|x|^{-\beta }\Big ]_{W^{s,p}(B_r^c)}^p\le C\int _r^{+\infty }\varrho ^{N-1-p\,(s+\beta )}\,d\varrho \int _{r/\varrho }^1 \xi ^{N-1}\,\big (\xi ^{-\beta \, p}+|1-\xi |^{p\,(1-s)-1}\big )\, d\xi . \end{aligned}$$

All the integrals are now explicitly computable and one can readily get (A.1).\(\square \)

Lemma A.2

Let \(0<(N-\textit{sp})/p<\beta <N/(p-1)\). For every \(R>0\), it holds

$$\begin{aligned} (-\Delta _p)^s |x|^{-\beta }=C(\beta )\, |x|^{-\beta \,(p-1)-\textit{sp}}\quad \hbox { weakly in } \overline{B_R}^{\,c}, \end{aligned}$$

where the constant \(C(\beta )\) is given by

$$\begin{aligned} C(\beta )=2\,\int _0^1 \varrho ^{\textit{sp}-1}\,\left[ 1-\varrho ^{N-\textit{sp}-\beta \,(p-1)}\right] \,\left| 1-\varrho ^{\beta }\right| ^{p-1}\, \Phi (\varrho )\,d\varrho , \end{aligned}$$
(A.2)

and

$$\begin{aligned} \Phi (\varrho )=\mathcal {H}^{N-2}(\mathbf {S}^{N-2})\,\int _{-1}^1 \frac{(1-t^2)^\frac{N-3}{2}}{\Big (1-2\,t\,\varrho +\varrho ^2\Big )^\frac{N+\textit{sp}}{2}}\, dt. \end{aligned}$$
(A.3)

Proof

Observe that

$$\begin{aligned} |x|^{-\beta \,(p-1)-\textit{sp}} \in L^{(p*)'}(B_R^c), \,\,\quad \text {for any }\beta >(N-\textit{sp})/p. \end{aligned}$$

Then, by Theorem 2.1 and Proposition 2.5 it suffices to show that

$$\begin{aligned} \int _{\mathbb {R}^{2N}}\frac{J_p(|x|^{-\beta }-|y|^{-\beta })}{|x-y|^{N+\textit{sp}}}\,(\varphi (x)-\varphi (y))\,dx\,dy=C(\beta )\,\int _\Omega |x|^{-\beta \,(p-1)-\textit{sp}}\,\varphi \,dx, \end{aligned}$$

for an arbitrary \(\varphi \in C^{\infty }_c(\overline{B_R}^{\,c})\). For every such a \(\varphi \) we consider the double integral

$$\begin{aligned} \begin{aligned} \int _{\mathbb {R}^{2N}}\frac{J_p(|x|^{-\beta }-|y|^{-\beta })}{|x-y|^{N+\textit{sp}}}\,(\varphi (x)-\varphi (y))\,dx\,dy. \end{aligned} \end{aligned}$$

We observe that this is absolutely convergent, indeed

$$\begin{aligned} \begin{aligned} \int _{\mathbb {R}^{2N}}&\frac{|J_p(|x|^{-\beta }-|y|^{-\beta })|}{|x-y|^{N+\textit{sp}}}\,|\varphi (x)-\varphi (y)|\,dx\,dy\\&=\int _{B_R^c\times B_R^c}\frac{|J_p(|x|^{-\beta }-|y|^{-\beta })|}{|x-y|^{N+\textit{sp}}}\,|\varphi (x)-\varphi (y)|\,dx\,dy\\&\quad +2\,\int _{B_R} \int _{\mathrm {supp}(\varphi )} \frac{|J_p(|x|^{-\beta }-|y|^{-\beta })|}{|x-y|^{N+\textit{sp}}}\,|\varphi (y)|\,dx\,dy\\&\le \Big [|x|^{-\beta }\Big ]_{W^{s,p}(B_R^c)}\,[\varphi ]_{W^{s,p}(B_R^c)}+C\,\Vert \varphi \Vert _{L^\infty }\,|\mathrm {supp}(\varphi )|\,\int _{B_R} |x|^{-\beta \,(p-1)}\,dx, \end{aligned} \end{aligned}$$

and both terms are finite, thanks to Lemma A.1. For \(\delta >0\) we consider the conical set

$$\begin{aligned} \mathcal {O}_\delta =\{(x,y)\in \mathbb {R}^{2\,N}\, :\, (1-\delta )\,|x|\le |y|\le (1+\delta )\,|x|\}, \end{aligned}$$

then by the Dominated Convergence Theorem

$$\begin{aligned}&\lim _{\delta \searrow 0}\int _{\mathcal {O}_\delta ^c} \frac{J_p(|x|^{-\beta }-|y|^{-\beta })}{|x-y|^{N+\textit{sp}}}\,(\varphi (x)-\varphi (y))\,dy\,dx\nonumber \\&\quad =\int _{\mathbb {R}^{2N}}\frac{J_p(|x|^{-\beta }-|y|^{-\beta })}{|x-y|^{N+\textit{sp}}}\,(\varphi (x) -\varphi (y))\,dx\,dy. \end{aligned}$$

We now observe that

$$\begin{aligned} \begin{aligned}&\int _{\mathcal {O}_\delta ^c} \frac{J_p(|x|^{-\beta }-|y|^{-\beta })}{|x-y|^{N+\textit{sp}}}\,(\varphi (x)-\varphi (y))\,dy\,dx\\&\quad =2\,\int _{\mathbb {R}^N}\left( \int _{\mathcal {K}_\delta (x)^c} \frac{J_p(|x|^{-\beta }-|y|^{-\beta })}{|x-y|^{N+\textit{sp}}}\,dy\right) \,\varphi (x)\,dx, \end{aligned} \end{aligned}$$

where for every \(x\in \mathbb {R}^N\)

$$\begin{aligned} \mathcal {K}_\delta (x)=\{y\in \mathbb {R}^N\, :\, (1-\delta )\,|x|\le |y|\le (1+\delta )\,|x|\}, \end{aligned}$$

and of course \(\mathcal {K}_\delta (x)=\mathcal {K}_\delta (x')\) whenever \(|x|=|x'|\). We set

$$\begin{aligned} f_\delta (x)=2\,\int _{\mathcal {K}_\delta (x)^c} \frac{J_p(|x|^{-\beta }-|y|^{-\beta })}{|x-y|^{N+\textit{sp}}}\,dy,\quad x\in \mathbb {R}^N{\setminus }\{0\}, \end{aligned}$$

it is easily seen that \(f_\delta \) is a radial function, homogeneous of degree \(-\beta \,(p-1)-\textit{sp}\) (see [4, Lemma 6.2]). Thus for \(x\not =0\) we have

$$\begin{aligned} f_\delta (x)=|x|^{-\beta \,(p-1)-\textit{sp}}\,f_{\delta }(\omega ),\quad \hbox { for }\quad \omega =\frac{x}{|x|}\in \mathbf {S}^{N-1}. \end{aligned}$$
(A.4)

We set

$$\begin{aligned} C(\beta ;\delta ):=f_{\delta }(\omega )=2\,\int _{\mathcal {K}_\delta (\omega )^c} \frac{J_p(1-|y|^{-\beta })}{|\omega -y|^{N+\textit{sp}}}\,dy,\quad \omega \in \mathbf {S}^{N-1}, \end{aligned}$$

which is independent of the direction \(\omega \), by radiality of \(f_\delta \). By taking the average over \(\mathbf {S}^{N-1}\) and proceeding as in [4, Lemma B.2], we get

$$\begin{aligned} C(\beta ;\delta )=2\,\int _{|\varrho -1|\ge \delta } \varrho ^{N-1}\,|1-\varrho ^{-\beta }|^{p-2}\,(1-\varrho ^{-\beta })\,\Phi (\varrho )\,d\varrho , \end{aligned}$$

where \(\Phi \) is defined in (A.3). We now decompose the integral defining \(C(\beta ;\delta )\) and perform a change of variables, i.e.

$$\begin{aligned} \begin{aligned} C(\beta ;\delta )&=-2\,\int _0^{1-\delta } \varrho ^{N-1}\,|1-\varrho ^{-\beta }|^{p-1}\,\Phi (\varrho )\,d\varrho +2\,\int _{1+\delta }^\infty \varrho ^{N-1}\,|1-\varrho ^{-\beta }|^{p-1}\,\Phi (\varrho )\,d\varrho \\&=-2\,\int _0^{1-\delta } \varrho ^{N-1-\beta \,(p-1)}\,|\varrho ^{\beta }-1|^{p-1}\,\Phi (\varrho )\,d\varrho \\&\quad +2\,\int _0^{1/(1+\delta )} \varrho ^{-N-1}\,|1-\varrho ^{\beta }|^{p-1}\,\Phi (1/\varrho )\,d\varrho . \end{aligned} \end{aligned}$$

Finally, observe that

$$\begin{aligned} \Phi (1/\varrho )=\varrho ^{N+\textit{sp}}\,\Phi (\varrho ), \end{aligned}$$

thus the quantity \(C(\beta ;\delta )\) can be written as

$$\begin{aligned} \begin{aligned} C(\beta ;\delta )&=2\,\int _0^{1-\delta } \left( 1-\varrho ^{N-\textit{sp}-\beta \,(p-1)}\right) \,\varrho ^{\textit{sp}-1}\,(1-\varrho ^{\beta })^{p-1}\,\Phi (\varrho )\,d\varrho \\&\quad +2\,\int _{1-\delta }^{1/(1+\delta )} \varrho ^{\textit{sp}-1}\,(1-\varrho ^{\beta })^{p-1}\,\Phi (\varrho )\,d\varrho . \end{aligned} \end{aligned}$$
(A.5)

Recall that \(\varphi \) is compactly supported in \(\overline{B_R}^{\,c}\), thus by using (A.4) we can estimate

$$\begin{aligned} \begin{aligned}&\left| \int _{\Omega } f_\delta \,\varphi \,dx-C(\beta )\,\int _\Omega |x|^{-\beta \,(p-1)-\textit{sp}}\,\varphi \,dx\right| \\&\quad \le \Vert \varphi \Vert _\infty \,R^{-\beta \,(p-1)-\textit{sp}}\,|\mathrm {supp}(\varphi )|\,\Big |C(\beta ;\delta )-C(\beta )\Big |. \end{aligned} \end{aligned}$$

In order to prove that \(C(\beta ;\delta )\) converges to \(C(\beta )\) as \(\delta \) goes to 0, we decompose the function \(\Phi \) defined in (A.3) as follows

$$\begin{aligned} \begin{aligned} \Phi (\varrho )&=\int _{-1}^{1/2} \frac{(1-t^2)^\frac{N-3}{2}}{(1-2\,t\,\varrho +\varrho ^2)^\frac{N+\textit{sp}}{2}}\, dt+\int _{1/2}^{1} \frac{(1-t^2)^\frac{N-3}{2}}{(1-2\,t\,\varrho +\varrho ^2)^\frac{N+\textit{sp}}{2}}\, dt=:\Phi _1(\varrho )+\Phi _2(\varrho ), \end{aligned} \end{aligned}$$

where we omitted the dimensional constant \(\mathcal {H}^{N-2}(\mathbf {S}^{N-2})\) for simplicity. Let us start estimating \(\Phi _1\). If we use that

$$\begin{aligned} 1-2\,t\,\varrho +\varrho ^2=(\varrho -t)^2+(1-t^2)\ge \frac{3}{4},\quad \hbox { if }-1\le t\le \frac{1}{2}, \end{aligned}$$

we get

$$\begin{aligned} 0\le \Phi _1(\varrho )\le C,\quad 0<\varrho <1. \end{aligned}$$
(A.6)

We now consider \(\Phi _2(\varrho )\), discussing separately the cases \(0<\varrho <1/2\) and \(1/2\le \varrho <1\). We observe that for \(0<\varrho <1/2\) we have

$$\begin{aligned} 1-2\,t\,\varrho +\varrho ^2=(1-\varrho )^2+2\,\varrho \,(1-t)\ge \frac{1}{4},\quad \hbox { if } \frac{1}{2}\le t\le 1. \end{aligned}$$

Then we get again

$$\begin{aligned} 0\le \Phi _2(\varrho )\le C,\quad \hbox { if } 0<\varrho <\frac{1}{2}. \end{aligned}$$
(A.7)

We are left with the term \(\Phi _2(\varrho )\) for \(1/2\le \varrho <1\). With simple manipulationsFootnote 4 we can write it as

$$\begin{aligned} \Phi _2(\varrho )=\frac{(2\,\varrho )^{-\frac{N-1}{2}}}{(1-\varrho )^{1+\textit{sp}}}\int _{0}^{\frac{\varrho }{(1-\varrho )^2}} \frac{\left( 2-\frac{(1-\varrho )^2}{2\,\varrho }\,\tau \right) ^\frac{N-3}{2}\,\tau ^\frac{N-3}{2}}{(1+\tau )^\frac{N+\textit{sp}}{2}}\, d\tau . \end{aligned}$$

In particular, we get

$$\begin{aligned} 0\le \Phi _2(\varrho )\le C\,(1-\varrho )^{-1-\textit{sp}},\quad \hbox { if }\frac{1}{2}\le \varrho <1. \end{aligned}$$
(A.8)

By using (A.6), (A.7) and (A.8), we thus obtain for the first integral in (A.5)

$$\begin{aligned} \lim _{\delta \searrow 0}2\,\int _0^{1-\delta } \left( 1-\varrho ^{N-\textit{sp}-\beta \,(p-1)}\right) \,\varrho ^{\textit{sp}-1}\,(1-\varrho ^{\beta })^{p-1}\,\Phi (\varrho )\,d\varrho =C(\beta ), \end{aligned}$$

and observe that the latter is finite, thanks to (A.8). It is only left to show that the other integral in (A.5) converges to 0. Still by (A.6) and (A.8), we obtain

where we assumed for simplicity that \(p-1-\textit{sp}\not =0\). If \(p-1-\textit{sp}>0\), the last term converges to 0. If \(p-1-\textit{sp}<0\), we have

$$\begin{aligned} \left( \frac{\delta }{1+\delta }\right) ^{p-1-\textit{sp}}-\delta ^{p-1-\textit{sp}}= & {} \delta ^{p-1-\textit{sp}}\,\Big [(1+\delta )^{\textit{sp}+1-p}-1\Big ]\\\simeq & {} (\textit{sp}+1-p)\,\delta ^{p-\textit{sp}},\quad \hbox { as } \delta \searrow 0, \end{aligned}$$

and thus the integral converges to 0 again. Finally, the borderline case \(p-1-\textit{sp}=0\) is treated similarly, we leave the details to the reader.

In conclusion, we get

$$\begin{aligned} \lim _{\delta \searrow 0}\int _{\Omega } f_\delta \,\varphi \,dx=C(\beta )\,\int _\Omega |x|^{-\beta \,(p-1)-\textit{sp}}\,\varphi \,dx, \end{aligned}$$

as desired.\(\square \)

Remark A.3

The previous result was proved in [15, Lemma 3.1] for the limit case \(\beta =(N-\textit{sp})/p\). Our argument is different, since we rely on elementary estimates for the function \(\Phi \), rather than on special properties of hypergeometric and beta functions like in [15].

Observe that the choice \(\beta =(N-\textit{sp})/(p-1)\) is feasible in the previous results, since

$$\begin{aligned} \frac{N-\textit{sp}}{p}<\frac{N-\textit{sp}}{p-1}<\frac{N}{p-1}. \end{aligned}$$

Moreover, with such a choice we have \(C(\beta )=0\) in (A.2). Then from Lemmas A.1 and A.2, we get the following.

Theorem A.4

For any \(R>0\), \(\Gamma (x)=|x|^{-\frac{N-\textit{sp}}{p-1}}\) belongs to \(\widetilde{D}^{s,p}(\overline{B_R}^{\,c})\) and weakly solves \((-\Delta _p)^su=0\) in \(\overline{B_R}^{\,c}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brasco, L., Mosconi, S. & Squassina, M. Optimal decay of extremals for the fractional Sobolev inequality. Calc. Var. 55, 23 (2016). https://doi.org/10.1007/s00526-016-0958-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-016-0958-y

Mathematics Subject Classification

Navigation