Skip to main content
Log in

Global minimizers for the doubly-constrained Helfrich energy: the axisymmetric case

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Since the pioneering work of Canham and Helfrich, variational formulations involving curvature-dependent functionals, like the classical Willmore functional, have proven useful for shape analysis of biomembranes. We address minimizers of the Canham–Helfrich functional defined over closed surfaces enclosing a fixed volume and having fixed surface area. By restricting attention to axisymmetric surfaces, we prove the existence of global minimizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2005)

  2. Anzellotti G., Serapioni R., Tamanini I.: Curvatures, functionals, currents. Indiana Univ. Math. J. 39, 617–669 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baumgart T., Hess S.T., Webb W.W.: Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425, 821–824 (2003)

    Article  Google Scholar 

  4. Baumgart T., Das S., Webb W.W., Jenkins J.T.: Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys. J. 89(2), 1067–1080 (2005)

    Article  Google Scholar 

  5. Bellettini G., Mugnai L.: Characterization and representation of the lower semicontinuous envelope of the elastica functional. Ann. Inst. H. Poincaré Anal. Non Linéaire 21(6), 839–880 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bellettini G., Mugnai L.: A varifolds representation of the relaxed elastica functional. J. Convex Anal. 14(3), 543–564 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Bellettini G., Mugnai L.: Approximation of Helfrich’s functional via diffuse interfaces. SIAM J. Math. Anal. 42(6), 2402–2433 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bellettini G., Dal Maso G., Paolini M.: Semicontinuity and relaxation properties of a curvature depending functional in 2D. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2) 4(20), 247–297 (1993)

    MathSciNet  Google Scholar 

  9. Canham P.B.: The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 26, 61–80 (1970)

    Article  Google Scholar 

  10. Cartan, H.: Théorie élémentaire des fonctions analytiques d’une ou plusieurs variables complexes. Avec le concours de Reiji Takahashi. Enseignement des Sciences. Hermann, Paris (1961)

  11. Choksi, R., Morandotti, M., Veneroni, M.: Global minimizers for multi-phase axisymmetric membranes. Preprint (2012). http://arxiv.org/abs/1204.6673

  12. Dall’Acqua A., Fröhlich S., Grunau H.C., Schieweck F.: Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data. Adv. Calc. Var. 4(1), 1–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Delladio S.: Special generalized gauss graphs and their application to minimization of functional involving curvatures. J. Reine Angew. Math. 486, 17–43 (1997)

    MathSciNet  MATH  Google Scholar 

  14. do Carmo, M.P.: Differential geometry of curves and surfaces. Prentice-Hall Inc., Englewood Cliffs, N.J. (1976). Translated from the Portuguese

  15. Elliott C.M., Stinner B.: Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys. 229(18), 6585–6612 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Elson E.L., Fried E., Dolbow J.E., Genin G.M.: Phase separation in biological membranes: integration of theory and experiment.Annu. Rev. Biophys. 39, 207–226 (2010)

    Article  Google Scholar 

  17. Evans L.C., Gariepy R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    Google Scholar 

  18. Helfrich W.: Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch. Teil C 28, 693–703 (1973)

    Google Scholar 

  19. Helmers, M.: Convergence of an approximation for rotationally symmetric two-phase lipid bilayer membranes. Tech. Rep., Institute for Applied Mathematics, University of Bonn (2011)

  20. Hutchinson J.E.: Second fundamental form for varifolds and the existence of surfaces minimising curvature. Indiana Univ. Math. J. 35, 45–71 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jenkins J.T.: The equations of mechanical equilibrium of a model membrane. SIAM J. Appl. Math. 32(4), 755–764 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jülicher F., Lipowsky R.: Domain-induced budding of vesicles. Phys. Rev. Lett 70(19), 2964–2967 (1993). doi:10.1103/PhysRevLett.70.2964

    Article  Google Scholar 

  23. Jülicher F., Lipowsky R.: Shape transformations of vesicles with intramembrane domains. Phys. Rev. E 53(3), 2670–2683 (1996)

    Article  Google Scholar 

  24. Li P., Yau S.T.: A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69(2), 269–291 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lowengrub J.S., Rätz A., Voigt A.: Phase-field modeling of the dynamics of multicomponent vesicles: spinodal decomposition, coarsening, budding, and fission. Phys. Rev. E 79(3), 031926 (2009)

    Article  Google Scholar 

  26. McCoy, J., Wheeler, G.E.: A classification theorem for Helfrich surfaces. Preprint (2012). http://arxiv.org/abs/1201.4540

  27. Moser, R.: A generalization of Rellich’s theorem and regularity of varifolds minimizing curvature. Tech. Rep. 72, Max-Planck-Institut for Mathematics in the Sciences (2001)

  28. Rivière T.: Analysis aspects of Willmore surfaces. Invent. Math. 174(1), 1–45 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schygulla J.: Willmore minimizers with prescribed isoperimetric ratio. Arch. Rational Mech. Anal. 203(3), 901–941 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Seifert U.: Configurations of fluid membranes and vesicles. Adv. Phys. 46(1), 13–137 (1997)

    Article  Google Scholar 

  31. Simon L.: Existence of surfaces minimizing the Willmore functional. Commun. Anal. Geom. 1(2), 281–326 (1993)

    MATH  Google Scholar 

  32. Templer R.H., Khoo B.J., Seddon J.M.: Gaussian curvature modulus of an amphiphilic monolayer. Langmuir 14, 7427–7434 (1998)

    Article  Google Scholar 

  33. Venkatesan B., Polans J., Comer J., Sridhar S., Wendell D., Aksimentiev A., Bashir R.: Lipid bilayer coated Al2O3 nanopore sensors: towards a hybrid biological solid-state nanopore. Biomed. Microdevices 13(4), 671–682 (2011)

    Article  Google Scholar 

  34. Wang X., Du Q.: Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. J. Math. Biol. 56(3), 347–371 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zurlo, G.: Material and geometric phase transitions in biological membranes. PhD thesis, University of Pisa (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Veneroni.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choksi, R., Veneroni, M. Global minimizers for the doubly-constrained Helfrich energy: the axisymmetric case. Calc. Var. 48, 337–366 (2013). https://doi.org/10.1007/s00526-012-0553-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-012-0553-9

Mathematics Subject Classification (2000)

Navigation