Skip to main content
Log in

Abstract

Let Ω be a bounded, smooth domain in \({\mathbb{R}^2}\). We consider the functional

$$I(u) = \int_\Omega e^{u^2}\,dx$$

in the supercritical Trudinger-Moser regime, i.e. for \({\int_\Omega |\nabla u|^2dx > 4\pi}\). More precisely, we are looking for critical points of I(u) in the class of functions \({u \in H_0^1 (\Omega )}\) such that \({\int_\Omega |\nabla u|^2 \, dx = 4\, \pi \, k\, (1+\alpha)}\), for small α > 0. In particular, we prove the existence of 1-peak critical points of I(u) with \({\int_\Omega |\nabla u|^2dx = 4\pi(1 + \alpha)}\) for any bounded domain Ω, 2-peak critical points with \({\int_\Omega |\nabla u|^2dx = 8\pi(1 + \alpha)}\) for non-simply connected domains Ω, and k-peak critical points with \({\int_\Omega |\nabla u|^2 dx = 4k \pi(1 + \alpha)}\) if Ω is an annulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimurthi.: Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-laplacian. Ann. Sc. Norm. Sup. Pisa, Ser. IV 17, 393-413 (1990)

    MathSciNet  MATH  Google Scholar 

  2. Adimurthi , Prashanth S.: Failure of Palais-Smale condition and blow-up analysis for the critical exponent problem in \({\mathbb{R}^2}\). Proc. Indian. Acad. Sci. Math. Sci. 107, 283-317 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adimurthi, Srikanth, P.N., Yadava, S.L.: Phenomena of critical exponent in \({\mathbb{R}^2}\). Proc. Roy. Soc. Edinburgh 199 A 19-25 (1991)

  4. Adimurthi , Druet O.: Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality. Comm. Partial Differ. Equ. 29, 295-322 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Adimurthi , Struwe M.: Global compactness properties of semilinear elliptic equations with critical exponential growth. J. Funct. Anal. 175, 125-167 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bahri A., Coron J.M.: On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain. Commun. Pure Appl. Math. 41, 255-294 (1988)

    MathSciNet  Google Scholar 

  7. Bahri A., Li Y.-Y., Rey O.: On a variational problem with lack of compactness: the topological effect of the critical points at infinity. Calc. Var. 3, 67-93 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Baraket S., Pacard F.: Construction of singular limits for a semilinear elliptic equation in dimension 2. Calc. Var. Partial Differ. Equ. 6(1), 1-38 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brezis H., Nirenberg L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437-447 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carleson L., Chang S.-Y.A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. (2) 110, 113-127 (1986)

    MathSciNet  MATH  Google Scholar 

  11. Coron J.M.: Topologie et cas limite des injections de Sobolev. C. R. Acad. Sci. Paris 299(Series I), 209-212 (1984)

    MathSciNet  MATH  Google Scholar 

  12. de Figueiredo D.G., do Ó J.M., Ruf B.: On an inequality by N. Trudinger and J. Moser and related elliptic equations. Commun. Pure Appl. Math. 55, 135-152 (2002)

    Article  MATH  Google Scholar 

  13. de Figueiredo D.G., Miyagaki O., Ruf B.: Elliptic equations in \({\mathbb{R}^2}\) with nonlinearities in the critical growth range. Calc. Var. Partial Differ. Equ. 3, 139-153 (1995)

    Article  MATH  Google Scholar 

  14. de Figueiredo D.G., Ruf B.: Existence and non-existnce of radial solutions for elliptic equations with critical exponent in \({\mathbb{R}^2}\). Commun. Pure Appl. Math. 48, 1-17 (1995)

    Google Scholar 

  15. del Pino M., Kowalczyk M., Musso M.: Singular limits in Liouville-type equations. Calc. Var. Partial Differ. Equ. 24, 47-81 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. del Pino M., Musso M.: Bubbling in Nonlinear Elliptic Problems Near Criticality. In: Chipot, M. (eds) Handbook of Differential Equations, Stationary Partial Differential Equations, vol. 3, pp. 215-316. Elsevier, Amsterdam (2006)

    Chapter  Google Scholar 

  17. del Pino M., Musso M., Ruf B.: New solutions for Trudinger-Moser critical equations in \({\mathbb{R}^2}\). J. Funct. Anal. 258, 421-457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Druet O.: Multibump analysis in dimension 2: quantification of blow-up levels. Duke Math. J. 132(2), 217-269 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Esposito O., Grossi M., Pistoia A.: On the existence of blowing-up solutions for a mean field equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(2), 227-257 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Flucher M.: Extremal functions for the Trudinger-Moser inequality in 2 dimensions. Comment. Math. Helv. 67, 471-497 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Han Z.-C.: Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire 8(2), 159-174 (1991)

    MATH  Google Scholar 

  22. Lamm T., Robert F., Struwe M.: The heat flow with a critical exponential nonlinearity. J. Funct. Anal. 257(9), 2951-2998 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin K.C.: Extremal functions for Moser’s inequality. Trans. Am. Math. Soc. 348(7), 2663-2671 (1996)

    Article  MATH  Google Scholar 

  24. Lions P.L.: The concentration-compactness principle in the calculus of variations. The limit case, part 1. Riv. Mat. Iberoamericana 1, 145-201 (1985)

    Article  MATH  Google Scholar 

  25. Monahan, J.P.: Numerical solutions of a non-linear boundary value problem, thesis, Princetion Univ., 1971

  26. Moser J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077-1092 (1970)

    Article  MathSciNet  Google Scholar 

  27. Pohozhaev, S.I.: The Sobolev embedding in the case pl = n, Proc. Tech. Sci. Conf. on Adv. Sci. Research 1964-1965, Mathematics Section, 158-170, Moskov. Ènerget. Inst. Moscow (1965)

  28. Rey O.: The role of the Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent. J. Funct. Anal. 89(1), 1-52 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Struwe M.: Critical points of embeddings of \({H_0^{1,n}}\) into Orlicz spaces. Ann. Inst. Henri Poincaré 5(5), 425-464 (1988)

    MathSciNet  MATH  Google Scholar 

  30. Struwe M.: A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187, 511-517 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  31. Struwe M.: Positive solutions of critical semilinear elliptic equations on non-contractible planar domains. J. Eur. Math. Soc. 2, 329-388 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Trudinger N.S.: On embedding into Orlicz spaces and some applications. J. Math. Mech. 17, 473-483 (1967)

    MathSciNet  MATH  Google Scholar 

  33. Yudovich, V.I.: Some estimates connected with integral operators and with solutions of elliptic equations, Dokl. Akad. Nauk SSRR 138, 805-808 (1961) (Russian); English transl., Soviet Math. Dokl. 2, 746-749 (1961)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Ruf.

Additional information

Communicated by A. Malchiodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

del Pino, M., Musso, M. & Ruf, B. Beyond the Trudinger-Moser supremum. Calc. Var. 44, 543–576 (2012). https://doi.org/10.1007/s00526-011-0444-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-011-0444-5

Mathematics Subject Classification (2000)

Navigation