Skip to main content
Log in

Existence of bound states for quasilinear elliptic problems involving critical growth and frequency

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In this paper we study the existence of bound states for the following class of quasilinear problems,

$$\begin{aligned} \left\{ \begin{aligned}&-\varepsilon ^p\Delta _pu+V(x)u^{p-1}=f(u)+u^{p^*-1},\ u>0,\ \text {in}\ {\mathbb {R}}^{N},\\&\lim _{|x|\rightarrow \infty }u(x) = 0, \end{aligned} \right. \end{aligned}$$

where \(\varepsilon >0\) is small, \(1<p<N,\) f is a nonlinearity with general subcritical growth in the Sobolev sense, \(p^{*} = pN/(N-p)\) and V is a continuous nonnegative potential. By introducing a new set of hypotheses, our analysis includes the critical frequency case which allows the potential V to not be necessarily bounded below away from zero. We also study the regularity and behavior of positive solutions as \(|x|\rightarrow \infty \) or \(\varepsilon \rightarrow 0,\) proving that they are uniformly bounded and concentrate around suitable points of \({\mathbb {R}}^N,\) that may include local minima of V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O., do Ó, J.M., Souto, M.A.S.: Local mountain-pass for a class of elliptic problems in \({\mathbb{R}}^{N}\) involving critical growth. Nonlinear Anal. 46, 495–510 (2001)

    Article  MathSciNet  Google Scholar 

  2. Alves, C.O., Souto, M.A.S.: On existence and concentration behavior of ground state solutions for a class of problems with critical growth. Commun. Pure Appl. Anal. 1, 417–431 (2002)

    Article  MathSciNet  Google Scholar 

  3. Alves, C.O., Souto, M.A.S.: Existence of solutions for a class of elliptic equations in \({\mathbb{R} }^{N}\) with vanishing potentials. J. Differ. Equ. 252, 5555–5568 (2012)

    Article  Google Scholar 

  4. Ambrosio, V.: Multiplicity and concentration results for a class of critical fractional Schrödinger–Poisson systems via penalization method. Commun. Contemp. Math. 22, 1850078 (2020)

    Article  MathSciNet  Google Scholar 

  5. Brézis, H., Kato, T.: Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures Appl. 9(58), 137–151 (1979)

    Google Scholar 

  6. Byeon, J., Jeanjean, L.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Ration. Mech. Anal. 185, 185–200 (2007)

    Article  MathSciNet  Google Scholar 

  7. Byeon, J., Wang, Z.-Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 165, 295–316 (2002)

    Article  MathSciNet  Google Scholar 

  8. Byeon, J., Wang, Z.-Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations. II. Calc. Var. Partial Differ. Equ. 18, 207–219 (2003)

    Article  Google Scholar 

  9. Damascelli, L., Ramaswamy, M.: Symmetry of \(C^1\) solutions of \(p\)-Laplace equations in \({\mathbb{R} }^{N}\). Adv. Nonlinear Stud. 1, 40–64 (2001)

    Article  MathSciNet  Google Scholar 

  10. del Pino, M., Felmer, P.L.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4, 121–137 (1996)

    Article  MathSciNet  Google Scholar 

  11. DiBenedetto, E.: \(C^{1+\alpha }\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7, 827–850 (1983)

    Article  MathSciNet  Google Scholar 

  12. do Ó, J.M.: On existence and concentration of positive bound states of \(p\)-Laplacian equations in \({\mathbb{R} }^{N}\) involving critical growth. Nonlinear Anal. 62, 777–801 (2005)

    Article  MathSciNet  Google Scholar 

  13. Figueiredo, G.M., Furtado, M.F.: Positive solutions for a quasilinear Schrödinger equation with critical growth. J. Dynam. Differ. Equ. 24, 13–28 (2012)

    Article  Google Scholar 

  14. Guedda, M., Véron, L.: Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal. 13, 879–902 (1989)

    Article  MathSciNet  Google Scholar 

  15. Jeanjean, L., Tanaka, K.: Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities. Calc. Var. Partial Differ. Equ. 21, 287–318 (2004)

    Article  MathSciNet  Google Scholar 

  16. Li, Q., Yang, Z.: Existence of solutions for a class of quasilinear elliptic equations in \({ R}^N\) with vanishing potentials. Appl. Anal. 92, 1803–1815 (2013)

    Article  MathSciNet  Google Scholar 

  17. Lins, H.F., Silva, E.A.B.: Quasilinear asymptotically periodic elliptic equations with critical growth. Nonlinear Anal. 71, 2890–2905 (2009)

    Article  MathSciNet  Google Scholar 

  18. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 223–283 (1984)

    Article  MathSciNet  Google Scholar 

  19. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoam. 1, 145–201 (1985)

    Article  MathSciNet  Google Scholar 

  20. Lyberopoulos, A.N.: Quasilinear scalar field equations involving critical Sobolev exponents and potentials vanishing at infinity. Proc. Edinb. Math. Soc. 2(61), 705–733 (2018)

    Article  MathSciNet  Google Scholar 

  21. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  Google Scholar 

  22. Simon, J.: Régularité de la solution d’une équation non linéaire dans \({ R}^{N}\), Journées d’Analyse Non Linéaire (Proc. Conf., Besançon: Lecture Notes in Math.), vol. 665, pp. 205–227. Springer, Berlin (1977)

  23. Strauss, W.: Mathematical aspects of classical nonlinear field equations. In: Nonlinear Problems in Theoretical Physics (Proc. IX G.I.F.T. Internat. Sem. Theoret. Phys., Univ. Zaragoza, Jaca, 1978), Lecture Notes in Physics, vol. 98, pp. , 123–149. Springer, Berlin

  24. Struwe, M.: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, vol. 34, 4th edn. Springer, Berlin (2008)

    Google Scholar 

  25. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 4(110), 353–372 (1976)

    Article  MathSciNet  Google Scholar 

  26. Trudinger, N.S.: On Harnack type inequalities and their application to quasilinear elliptic equations. Commun. Pure Appl. Math. 20, 721–747 (1967)

    Article  MathSciNet  Google Scholar 

  27. Wang, J., An, T., Zhang, F.: Positive solutions for a class of quasilinear problems with critical growth in \({\mathbb{R} }^{N}\). Proc. R. Soc. Edinb. Sect. A 145, 411–444 (2015)

    Article  Google Scholar 

  28. Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153, 229–244 (1993)

    Article  Google Scholar 

  29. Zhang, J.: Standing waves with a critical frequency for nonlinear Schrödinger equations involving critical growth. Appl. Math. Lett. 63, 53–58 (2017)

    Article  MathSciNet  Google Scholar 

  30. Zhang, J., do Ó, J.M.: Standing waves for nonlinear Schrödinger equations involving critical growth of Trudinger–Moser type. Z. Angew. Math. Phys. 66, 3049–3060 (2015)

    Article  MathSciNet  Google Scholar 

  31. Zhang, J., do Ó, J.M., Yang, M.: Multi-peak standing waves for nonlinear Schrödinger equations involving critical growth. Math. Nachr. 290, 1588–1601 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Ailton Rodrigues da Silva (DMAT/UFRN) for several discussions about this subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Ferraz.

Ethics declarations

Conflict of interest

The author declare that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferraz, D. Existence of bound states for quasilinear elliptic problems involving critical growth and frequency. Nonlinear Differ. Equ. Appl. 31, 46 (2024). https://doi.org/10.1007/s00030-024-00932-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-024-00932-9

Keywords

Mathematics Subject Classification

Navigation