Skip to main content
Log in

Limit theorems for optimal mass transportation

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The optimal mass transportation was introduced by Monge some 200 years ago and is, today, the source of large number of results in analysis, geometry and convexity. Here I investigate a new, surprising link between optimal transformations obtained by different Lagrangian actions on Riemannian manifolds. As a special case, for any pair of non-negative measures λ+, λ of equal mass

$$W_1(\lambda^-, \lambda^+)= \lim_{\varepsilon\rightarrow 0} \varepsilon^{-1} \inf_{\mu} W_p(\mu+\varepsilon\lambda^-, \mu+\varepsilon\lambda^+) $$

where W p , p ≥ 1 is the Wasserstein distance and the infimum is over the set of probability measures in the ambient space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Pratelli, L.: Existence and stability results in the L1 theory of optimal transportation. In: Lecture Notes in Mathamatics, vol. 1813. Springer, NY (2003)

  2. Bangert V.: Minimal measures and minimizing closed normal one-currents. GAFA 9, 413–427 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernard P.: Young measures, superposition and transport. Indiana Univ. Math. J. 57(1), 247–275 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernard P., Buffoni B.: Optimal mass transportation and Mather theory. J. Eur. Math. Soc. 9, 85–121 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bernard P., Buffoni B.: Weak KAM pairs and Monge-Kantorovich duality. Adv. Study Pure Math. 47, 397–420 (2007)

    MathSciNet  Google Scholar 

  6. Bernot, M., Caselles, V., Morel, J.M.: Optimal transportation networks. In: Lecture Notes in Mathematics, vol. 1955. Springer, NY (2009)

  7. Bouchittè G., Buttazzo G., Seppecher P.: Energies with respect to a measure and applications to low dimensional structures. Calc. Var. Partial Differ. Equ. 5, 37–54 (1997)

    Article  MATH  Google Scholar 

  8. Bouchittè G., Buttazzo G., Seppecher P.: Shape optimization solutions via Monge-Kantorovich equation. CRAS 324, 1185–1191 (1997)

    MATH  Google Scholar 

  9. Buttazzo G., Stepanov E.: Optimal transportation networks as free Dirichlet regions for the Monge-Kantorovich problem. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2(5), 631–678 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Contreras G., Delgado J., Iturriaga R.: Lagrangian flows: the dynamics of globally minimizing orbits. II. Bol. Soc. Brasil. Mat. (N.S.) 28(2), 155–196 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. De Pascale L., Gelli M.S., Granieri L.: Minimal measures, one-dimensional currents and the Monge-Kantorovich problem. Calc. Var. Partial Differ. Equ. 27, 1–23 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Evans L.C.: A survey of partial differential equations methods in weak KAM theory. Commun. Pure Appl. Math. 57(4), 445–480 (2004)

    Article  MATH  Google Scholar 

  13. Evans, L.C., Gangbo, W.: Differential equations methods for the Monge-Kantorovich mass transfer problem. In: Memorial of American Mathematical Society, vol. 137. Springer, NY (1999)

  14. Evans L.C., Gomes D.D.: Effective Hamiltonians and averaging for Hamiltonian dynamics. I. Arch. Ration. Mech. Anal. 157(1), 1–33 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Evans L.C., Gomes D.D.: Effective Hamiltonians and averaging for Hamiltonian dynamics. II. Arch. Ration. Mech. Anal. 161(4), 271–305 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fathi A.: Solutions KAM faibles conjuguées et barrières de Peierls. C.R. Acad. Sci. Paris Sèr. I Math. 325, 649–652 (1997)

    MathSciNet  MATH  Google Scholar 

  17. Fathi A., Siconolfi A.: Existence of C 1 critical subsolutions of the Hamilton-Jacobi equation. Invent. Math. 155(2), 363–388 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fathi A., Sicololfi A.: PDE aspects of Aubry-Mather theory for quasiconvex hamiltonians. Cal. Var. 22, 185–228 (2005)

    Article  MATH  Google Scholar 

  19. Granieri L.: On action minimizing measures for the Monge-Kantorovich problem. NoDEA Nonlinear Differ. Equ. Appl. 14(1,2), 125–152 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Iri, M.: Theory of flows in continua as approximation to flows in networks. In: Prekopa, A. (ed.) Survey of Math Programming. North-Holland, Amsterdam (1979)

  21. Mañé R.: On the minimizing measures of Lagrangian dynamical systems. Nonlinearity 5, 623–638 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mañé R.: Lagrangian flows: The dynamics of globally minimizing orbits. Bol. Soc. Bras. Mater. 28, 141–153 (1997)

    Article  MATH  Google Scholar 

  23. Mather J.N.: Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 207, 169–207 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rockafeller, R.T.: Convex Analysis. Princeton U. Press, Princeton, NJ (1970)

  25. Strang, G.: L 1 and L approximations of vector fields in the plane. In: Lecture Notes in Numerical and Applied Analysis, vol. 5, pp. 273–288. Springer, NY (1982)

  26. Strang G.: Maximal flow through a domain. Math. Program. 26, 123–143 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  27. Siburg, F.: The principle of least action in geometry and dynamics. In: Lecture Notes in Mathematics, vol. 1844. Springer, NY (2004)

  28. Villani, C.: Optimal Transport: Old and New, Grundlehren der mathematischen Wissenschaften (2008)

  29. Wolansky G.: Extended least action principle for steady flows under a prescribed flux. Calc. Var. Partial Differ. Equ. 31, 277–296 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wolansky G.: Minimizers of Dirichlet functionals on the n-torus and the weak KAM theory. Ann. Inst. H. Poincare’ Anal. Non Line’aire 26, 521–545 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wolansky, G.: Limit Theorems for Optimal Mass Transportation and Applications to Networks (to appear in CDCS)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Wolansky.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolansky, G. Limit theorems for optimal mass transportation. Calc. Var. 42, 487–516 (2011). https://doi.org/10.1007/s00526-011-0395-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-011-0395-x

Mathematics Subject Classification (2000)

Navigation