Skip to main content
Log in

Minimal measures, one-dimensional currents and the Monge–Kantorovich problem

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In recent works L.C. Evans has noticed a strong analogy between Mather's theory of minimal measures in Lagrangian dynamic and the theory developed in the last years for the optimalmass transportation (or Monge–Kantorovich) problem. In this paper we start to investigate this analogy by proving that to each minimal measure it is possible to associate, in a natural way, a family of curves on the space of probability measures. These curves are absolutely continuous with respect to the metric structure related to the optimal mass transportation problem. Someminimality properties of such curves are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ambrosio, L.: Lecture notes on transport problems. In: Mathematical Aspects of Evolving Interfaces. Lecture Notes in Mathematics, vol. 1812, pp. 1–52. Springer, Berlin (2003)

  2. Ambrosio, L.: Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158(2), 227–260 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in mathematics ETH Zürich, Birkhäuser, Basel (2005)

    Google Scholar 

  4. Ambrosio, L., Tilli, P.: Topics on Analysis in Metric Spaces, Oxford Lecture Series in Mathematics and Its Applications, vol. 25. Oxford University Press, Oxford (2004)

  5. Arnold, V.: Geometrical Methods in the Theory of Ordinary Differential Equations. Springer-Verlag, Berlin & New York (1982)

    Google Scholar 

  6. Bangert, V.: Minimal measures and minimizing closed normal one-currents. GAFA Geom. Funct. Anal. 9(3), 413–427 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bernard, P., Buffoni, B.: Optimal mass transportation and Mather theory, Preprint (December 2004) (to appear on J. Eur. Math. Soc. (JEMS))

  8. Bouchitté, G., Buttazzo, G.: Characterization of optimal shapes and masses through Monge–Kantorovich equation. J. Eur. Math. Soc. (JEMS) 3, 139–168 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bouchitté, G., Buttazzo, G., Seppecher, P.: Shape optimization solutions via Monge–Kantorovich equation. C. R. Acad. Sci. Paris 324-I, 1185–1191 (1997)

    Google Scholar 

  10. Bouchitté, G., Buttazzo, G., De Pascale, L.: A p-Laplacian approximation for some mass optimization problems. J. Optim. Theory Appl. 18, 1–25 (2003)

    Article  Google Scholar 

  11. Brenier, Y.: Extended Monge–Kantorovich Theory, in Optimal Transportation and Applications, Lecture Notes in Mathematics, vol. 1813, pp. 91-121. Springer, Berlin (2003)

  12. Benamou, J., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Contreras, G., Iturriaga, R.: Global minimizers of autonomous Lagrangians. IMPA, Rio de Janeiro (1999)

    MATH  Google Scholar 

  14. De Pascale, L., Pratelli, A.: Regularity properties for Monge transport density and for solutions of some shape optimization problems. Calc. Var. Partial Differential Equations 14, 249–274 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Di Perna, R.J., Lions, P.L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  MathSciNet  Google Scholar 

  16. Evans, L.C.: Some new PDE methods for weak KAM theory, Calc. Var. Partial Differential Equations 17(2), 159–177 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Evans, L.C.: Partial differential equations and Monge–Kantorovich mass transfer (survey paper). In: Yau, S.T. (ed.) Current Developments in Mathematics, 1997. International Press (1999)

  18. Evans, L.C., Gangbo, W.: Differential equations methods for the Monge–Kantorovich mass transfer problem. Mem. Amer. Math. Soc. 137 (1999)

  19. Evans, L.C., Gomes, D.: Linear programming interpretation of Mather's variational principle. ESAIM Control Optim. Calc. Var. 8, 693–702 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fathi, A.: Thèorème KAM faible et thèorie de Mather sur les systèmes lagrangiens. C. R. Acad. Sci. Paris Sèr. I Math. 324(9), 1043–1046 (1997)

    MathSciNet  MATH  Google Scholar 

  21. Fathi, A.: Solutions KAM faibles conjuguèes et barrières de Peierls. C. R. Acad. Sci. Paris Sèr. I Math. 325(6), 649–652 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Fathi, A.: Weak Kam Theorem in Lagrangian Dynamics. Cambridge University Press (forthcoming)

  23. Fathi, A., Siconolfi, A.: Existence of C 1 critical subsolutions of the Hamilton-Jacobi equation. Invent. Math. 155(2), 363–388 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Federer, H.: Geometric Measure Theory. Springer (Berlin) (1969)

    MATH  Google Scholar 

  25. Gangbo, W., McCann, R.J.: The geometry of optimal transportation. Acta Math. 177, 113–161 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Giaquinta, M., Modica, G., Souček, J.: Cartesian currents in the calculus of variations. I. Cartesian currents. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 37. Springer-Verlag, Berlin (1998)

  27. Gomes, D.: Viscosity solutions of Hamilton-Jacobi equations, and asymptotics for Hamiltonian systems. Calc. Var. Partial Differential Equations 14(3), 345–357 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Granieri, L.: On action minimizing measures for the Monge–Kantorovich problem, Preprint (July 2004) (to appear on NoDEA Nonlinear Differential Equations Appl.)

  29. Hohloch, S.: Optimale Massebewegung im Monge–Kantorovich Transportproblem, Diplomarbeit (December 2002)

  30. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-Plank equation. Siam J. Math. Anal. 29, 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lang, U., Schroeder, V.: Kirszbraun's theorem and metric spaces of bounded curvature. GAFA Geom. Funct. Anal. 7, 535–560 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mather, J.: Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 207(2), 169–207 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mather, J.: Minimal measures. Comment. Math. Helv. 64(3), 375–394 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  34. Otto, F.: The geometry of dissipative evolution equations: the porus medium equation. Comm. Partial Differential Equations 26(1/2), 101–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Smirnov, S.K.: Decomposition of solenoidal vector charges into elementary solenoids and the structure of normal one-dimensional currents. St. Petersburg Math. J. 5(4), 841–867 (1994)

    MathSciNet  Google Scholar 

  36. Sturm, K.T.: Stochastics and Analysis on Metric Spaces (lecture notes in preparation)

  37. Villani C, Topics in Mass Transportation, Graduate Studies in Mathematics 58, AMS, Providence, RI

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi De Pascale.

Additional information

Mathematics Subject Classification (2000)37J50, 49Q20, 49Q15

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Pascale, L., Gelli, M.S. & Granieri, L. Minimal measures, one-dimensional currents and the Monge–Kantorovich problem. Calc. Var. 27, 1–23 (2006). https://doi.org/10.1007/s00526-006-0017-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-006-0017-1

Keywords

Navigation