Skip to main content

Advertisement

Log in

FGNet: Fixation guidance network for salient object detection

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In challenging scenarios (e.g., small objects and cluttered backgrounds), most existing algorithms suffer from inconsistent results with human visual attention. Since fixation prediction can better model the human visual attention mechanism and has a strong correlation with salient objects. Inspired by this, we proposed a fixation guidance network (FGNet) for salient object detection, which innovatively used fixation prediction to guide both salient object detection and edge detection. Firstly, a multi-branch network structure was designed to achieve multi-task detection. Each branch unit significantly learned the extracted features to accomplish the correct prediction. Secondly, given the strong correlation between the fixation and salient objects, a fixation guidance module was employed to guide salient object detection and edge detection for obtaining more accurate detection results. Finally, to  full use the complementary relationship between salient features and edge features, we proposed a multi-resolution feature interaction module to achieve mutual optimization within the same feature and between the different features for suppressing noise and enhancing their representations. The experimental results show that our proposed method performed better in challenging scenes and outperformed existing state-of-the-art algorithms in several metrics on four public benchmark datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The data that support this findings of this study are openly available in the following public domain resources: HKU-IS: [29] https://i.cs.hku.hk/~gbli/deep_saliency.html; PASCAL-S [44]: https://academictorrents.com/details/6c49defd6f0e417c039637475cde638d1363037e; DUTS [47]: http://saliencydetection.net/duts/; DUT-OMRON [48]: http://saliencydetection.net/dut-omron/; ECSSD [49]: http://www.cse.cuhk.edu.hk/leojia/projects/hsaliency/.

References

  1. Borji A, Cheng MM, Hou Q, Jiang H, Li J (2014) Salient object detection: a survey. Eprint Arxiv 16(7):3118

  2. Liu N, Han J, Yang M-H (2018) PiCANet: Learning pixel-wise contextual attention for saliency detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 3089–3098

  3. Cheng M-M, Mitra NJ, Huang X, Torr PH, Hu S-M (2014) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37(3):569–582

    Article  Google Scholar 

  4. Luo Z, Mishra A, Achkar A, Eichel J, Li S, Jodoin P (2017) Non-local deep features for salient object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 6593–6601

  5. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259

    Article  Google Scholar 

  6. Liu T, Yuan Z, Sun J, Wang J, Zheng N, Tang X, Shum H-Y (2010) Learning to detect a salient object. IEEE Trans Pattern Anal Mach Intell 33(2):353–367

    Google Scholar 

  7. Achanta R, Estrada F, Wils P, Süsstrunk S (2008) Salient region detection and segmentation. In: Computer vision systems: 6th international conference, ICVS 2008 Santorini, Greece, May 12–15, 2008 Proceedings 6, pp 66–75

  8. Lecun Y, Bottou L (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  9. He S, Lau RWH, Liu W, Huang Z, Yang Q (2015) SuperCNN: A superpixelwise convolutional neural network for salient object detection. Int J Comput Vis. 115(3):330–344

    Article  MathSciNet  Google Scholar 

  10. Lee G, Tai Y-W, Kim J (2016) Deep saliency with encoded low level distance map and high level features. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 660–668

  11. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 39(4):640–651

    Google Scholar 

  12. Chen S, Tan X, Wang B, Hu X (2018) Reverse attention for salient object detection. In: Proceedings of the European conference on computer vision (ECCV), pp 234–250

  13. Guan W, Wang T, Qi J, Zhang L, Lu H (2019) Edge-aware convolution neural network based salient object detection. IEEE Signal Process Lett 26(1):114–118

    Article  Google Scholar 

  14. Jiang H, Wang J, Yuan Z, Wu Y, Zheng N, Li S (2013) Salient object detection: a discriminative regional feature integration approach. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 2083–2090

  15. Niu Y, Geng Y, Li X, Liu F (2012) Leveraging stereopsis for saliency analysis. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 454–461

  16. Borji A, Cheng M-M, Jiang H, Li J (2015) Salient object detection: a benchmark. IEEE Trans Image Process 24(12):5706–5722

    Article  MathSciNet  Google Scholar 

  17. Chen X, Zheng A, Li J, Lu F (2017) Look, perceive and segment: finding the salient objects in images via two-stream fixation-semantic CNNs. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 1050–1058

  18. Kruthiventi SS, Gudisa V, Dholakiya JH, Venkatesh Babu R (2016) Saliency unified: a deep architecture for simultaneous eye fixation prediction and salient object segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 5781–5790

  19. Wang W, Shen J, Dong X, Borji A, Yang R (2019) Inferring salient objects from human fixations. IEEE Trans Pattern Anal Mach Intell 42(8):1913–1927

    Article  Google Scholar 

  20. Zhang M, Liu T, Piao Y, Yao S, Lu H (2021) Auto-msfnet: search multi-scale fusion network for salient object detection. In: Proceedings of the 29th ACM international conference on multimedia, pp 1–10

  21. Wu Z, Su L, Huang Q (2019) Stacked cross refinement network for edge-aware salient object detection. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 7264–7273

  22. Liu N, Han J, Zhang D, Wen S, Liu T (2015) Predicting eye fixations using convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 362–370

  23. Wang W, Shen J (2018) Deep visual attention prediction. IEEE Trans Image Process 27(5):2368–2378

    Article  MathSciNet  Google Scholar 

  24. Kruthiventi SSS, Ayush K, Venkatesh Babu R (2017) Deepfix: A fully convolutional neural network for predicting human eye fixations. IEEE Trans Image Process 26(9):4446–4456

    Article  MathSciNet  Google Scholar 

  25. Treisman A, Gelade G (1980) A feature-integration theory of attention. Cogn Psychol 12(1):97–136

    Article  Google Scholar 

  26. Koch C, Ullman S (1987) Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol 4(4):219–227

    Google Scholar 

  27. Oliva A, Torralba A, Castelhano MS, Henderson JM (2003) Top-down control of visual attention in object detection. In: Proceedings 2003 international conference on image processing (Cat. No. 03CH37429), vol 1, pp 253–256

  28. Bruce NDB, Tsotsos JK (2005) Saliency based on information maximization. In: International conference on neural information processing systems, vol 18

  29. Li G, Yu Y (2015) Visual saliency based on multiscale deep features. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 5455–5463

  30. Wang L, Wang L, Lu H, Zhang P, Ruan X (2016) Saliency detection with recurrent fully convolutional networks. In: Proceedings of the European conference on computer vision (ECCV), pp 825–841

  31. Liu N, Han J (2016) Dhsnet: Deep hierarchical saliency network for salient object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp. 678–686

  32. Pang Y, Zhao X, Zhang L, Lu H (2020) Multi-scale interactive network for salient object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 9413–9422

  33. Kroner A, Senden M, Driessens K, Goebel R (2020) Contextual encoder-decoder network for visual saliency prediction. Neural Netw 129:261–270

    Article  Google Scholar 

  34. Zhao J-X, Liu J-J, Fan D-P, Cao Y, Yang J, Cheng M-M (2019) Egnet: Edge guidance network for salient object detection. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 8779–8788

  35. Zhou H, Xie X, Lai J-H, Chen Z, Yang L (2020) Interactive two-stream decoder for accurate and fast saliency detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 9141–9150

  36. Wang W, Zhao S, Shen J, Hoi SC, Borji A (2019) Salient object detection with pyramid attention and salient edges. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1448–1457

  37. Yuan J, Wei J, Wattanachote K, Zeng K, Luo X, Xu Q, Gong Y (2022) Attention-based bi-directional refinement network for salient object detection. Appl Intell 52(12):14349–14361

    Article  Google Scholar 

  38. Wang Z, Zhang Y, Liu Y, Wang Z, Coleman S, Kerr D (2022) TF-SOD: a novel transformer framework for salient object detection. Neural Comput Appl 34(14):11789–11806

    Article  Google Scholar 

  39. Zhang L, Wu J, Wang T, Borji A, Wei G, Lu H (2020) A multistage refinement network for salient object detection. IEEE Trans Image Process 29:3534–3545

    Article  Google Scholar 

  40. Chen Z, Xu Q, Cong R, Huang Q (2020) Global context-aware progressive aggregation network for salient object detection. In: Proceedings of the AAAI conference on artificial intelligence, vol 34, pp 10599–10606

  41. Hou Q, Cheng M-M, Hu X, Borji A, Tu Z, Torr PH (2017) Deeply supervised salient object detection with short connections. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 3203–3212

  42. Li Z, Lang C, Chen Y, Liew J, Feng J (2019) Deep reasoning with multi-scale context for salient object detection. arXiv preprint arXiv:1901.08362

  43. Li G, Yu Y (2016) Deep contrast learning for salient object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 478–487

  44. Li Y, Hou X, Koch C, Rehg JM, Yuille AL (2014) The secrets of salient object segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 280–287

  45. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778

  46. Wu Z, Su L, Huang Q (2019) Cascaded partial decoder for fast and accurate salient object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 3907–3916

  47. Wang L, Lu H, Wang Y, Feng M, Wang D, Yin B, Ruan X (2017) Learning to detect salient objects with image-level supervision. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 136–145

  48. Judd T, Ehinger K, Durand F, Torralba A (2010) Learning to predict where humans look. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 2106–2113

  49. Yan Q, Xu L, Shi J, Jia J (2013) Hierarchical saliency detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1155–1162

  50. Borji A, Itti L (2012) State-of-the-art in visual attention modeling. IEEE Trans Pattern Anal Mach Intell 35(1):185–207

    Article  Google Scholar 

  51. Borji A, Itti L (2012) Exploiting local and global patch rarities for saliency detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 478–485

  52. Sprague N, Ballard D (2003) Eye movements for reward maximization. Neural Inf Process Syst 16:1467–1474

    Google Scholar 

  53. Liu N, Han J, Liu T, Li X (2016) Learning to predict eye fixations via multiresolution convolutional neural networks. IEEE Trans Neural Netw Learn Syst 29(2):392–404

    Article  MathSciNet  Google Scholar 

  54. Pan J, Sayrol E, Giro-i-Nieto X, McGuinness K, O’Connor NE (2016) Shallow and deep convolutional networks for saliency prediction. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 598–606

  55. Wang W, Lai Q, Fu H, Shen J, Ling H, Yang R (2021) Salient object detection in the deep learning era: an in-depth survey. IEEE Trans Pattern Anal Mach Intell 44(6):3239–3259

    Article  Google Scholar 

  56. Wang T, Zhang L, Wang S, Lu H, Yang G, Ruan X, Borji A (2018) Detect globally, refine locally: a novel approach to saliency detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 3127–3135

  57. Zhang L, Dai J, Lu H, He Y, Wang G (2018) A bi-directional message passing model for salient object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1741–1750

  58. Wei J, Wang S, Wu Z, Su C, Huang Q, Tian Q (2020) Label decoupling framework for salient object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 13025–13034

  59. Wei J, Wang S, Huang Q (2020) F\(^3\)net: Fusion, feedback and focus for salient object detection. In: Proceedings of the AAAI conference on artificial intelligence, vol 34, pp 12321–12328

  60. Chen S, Tan X, Wang B, Lu H, Hu X, Fu Y (2020) Reverse attention-based residual network for salient object detection. IEEE Trans Image Process 29:3763–3776

    Article  Google Scholar 

  61. Feng M, Lu H, Yu Y (2020) Residual learning for salient object detection. IEEE Trans Image Process 29:4696–4708

    Article  Google Scholar 

  62. Liu N, Zhang N, Wan K, Shao L, Han J (2021) Visual saliency transformer. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 4722–4732

  63. Xu B, Liang H, Liang R, Chen P (2021) Locate globally, segment locally: a progressive architecture with knowledge review network for salient object detection. In: Proceedings of the AAAI Conference on artificial intelligence, vol 35, pp 3004–3012

  64. Wu Z, Li S, Chen C, Hao A, Qin H (2022) Recursive multi-model complementary deep fusion for robust salient object detection via parallel sub-networks. Pattern Recogn 121:108212

    Article  Google Scholar 

  65. Wu Y-H, Liu Y, Zhang L, Cheng M-M, Ren B (2022) EDN: Salient object detection via extremely-downsampled network. IEEE Trans Image Process 31:3125–3136

    Article  Google Scholar 

  66. Zhuge M, Fan D-P, Liu N, Zhang D, Xu D, Shao L (2023) Salient object detection via integrity learning. IEEE Trans Pattern Anal Mach Intell 45(3):3738–3752

    Google Scholar 

  67. Zhang X, Zhou X, Lin M, Sun J (2018) Shufflenet: An extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 6848–6856

  68. Howard A, Sandler M, Chu G, Chen L-C, Chen B, Tan M, Wang W, Zhu Y, Pang R, Vasudevan V, et al (2019) Searching for mobilenetv3. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 1314–1324

  69. Fan D-P, Zhang J, Xu G, Cheng M-M, Shao L (2022) Salient objects in clutter. IEEE Trans Pattern Anal Mach Intell 45(2):2344–2366

    Article  Google Scholar 

  70. Jiang M, Huang S, Duan J, Zhao Q (2015) Salicon: Saliency in context. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1072–1080

Download references

Acknowledgements

The work was supported by Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515011078) and National Science Foundation Grant of China (Grant No. 61772149). The corresponding author is Yongyi Gong.

Funding

This work was funded by Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515011078) and National Science Foundation Grant of China (Grant No. 61772149).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongyi Gong.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Xiao, L., Wattanachote, K. et al. FGNet: Fixation guidance network for salient object detection. Neural Comput & Applic 36, 569–584 (2024). https://doi.org/10.1007/s00521-023-09028-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-09028-4

Keywords

Navigation