Skip to main content
Log in

Data-driven estimation models of asphalt mixtures dynamic modulus using ANN, GP and combinatorial GMDH approaches

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The objective of the present study is to develop and evaluate machine learning-based prediction models, employing the artificial neural networks (ANNs), Genetic Programming (GP), and the Combinatorial Group Method of Data Handling (GMDH-Combi), for dynamic modulus (E*) of hot mix asphalt estimation. To develop the models, an experimental database including 1320 data was employed in which dynamic shear modulus of binder, binder phase angle, cumulative percent retained on (3/8-in.) sieve, No. 4 sieve, percent passing No. 200 sieve by total aggregate weight, volumetric percent air voids in the mix, and volumetric effective binder content were considered as the effective contributing parameters on E*. Considered input parameters can be readily measured using simple laboratory tests. The proposed models’ performances were evaluated using common error criteria and compared with that of existing models for estimating E* such as the Witczak, modified Witczak, revised Bari–Witczak, Hirsch, Yu and Shen, Al-Khateeb (I) and (II), global and the simplified global models. The results indicated that the ANN model with correlation coefficients of 0.9821 and 0.9839, respectively, for training and testing, is more accurate than the GMDH (0.9500 and 0.9503) and GP (0.9493 and 0.9495)-based developed models. Additionally, the accuracies of the proposed models outperform entire existing models. Moreover, a wide range of input data was considered in the model development, and the proposed models’ generality and robustness were investigated through a parametric analysis over the covered ranges. The main benefit of using the GMDH and GP approaches was providing closed-form explicit mathematical expressions, which leads to simple and straightforward applications for general engineers and researchers in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Prowell BD, Hurley GC, Frank B (2011) Warm-mix asphalt: best practices. National Asphalt Pavement Association, Lanham

    Google Scholar 

  2. Yongliang L, Xiangming K, Yanrong Z, Peiyu Y (2013) Static and dynamic mechanical properties of cement-asphalt composites. J Mater Civ Eng 25:1489–1497. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000681

    Article  Google Scholar 

  3. McGhee KH (2004) NCHRP synthesis of highway practice 334: automated pavement distress collection techniques. Transportation Research Board of the National Academies, Washington, DC

    Google Scholar 

  4. Hataf N, Ghadir P, Ranjbar N (2018) Investigation of soil stabilization using chitosan biopolymer. J Clean Prod 170:1493–1500. https://doi.org/10.1016/j.jclepro.2017.09.256

    Article  Google Scholar 

  5. Ghadir P, Ranjbar N (2018) Clayey soil stabilization using geopolymer and Portland cement. Constr Build Mater 188:361–371. https://doi.org/10.1016/j.conbuildmat.2018.07.207

    Article  Google Scholar 

  6. Ferdowsi A, Hoseini S, Farzin S et al (2020) Shape optimization of gravity dams using a nature-inspired approach. Soft Comput Civ Eng 4:65–78. https://doi.org/10.22115/scce.2020.224492.1196

    Article  Google Scholar 

  7. Shariatmadari N, Reza M, Tasuji A et al (2020) Experimental study on the effect of chitosan biopolymer on sandy soil stabilization. E3S Web Conf 195:06007. https://doi.org/10.1051/e3sconf/202019506007

    Article  Google Scholar 

  8. Ghanizadeh A, Heidarabadizadeh N, Heravi F (2021) Gaussian process regression (GPR) for auto-estimation of resilient modulus of stabilized base materials. Soft Comput Civ Eng 5:80–94. https://doi.org/10.22115/scce.2021.269187.1273

    Article  Google Scholar 

  9. Enieb M, Shbeeb L, Asi I et al (2020) Effect of asphalt grade and polymer type (SBS and EE-2) on produced PMB and asphalt concrete mix properties. J Mater Civ Eng 32:04020385. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003479

    Article  Google Scholar 

  10. Poovaneshvaran S, Zheng LW, Hasan MRM et al (2021) Workability, compactibility and engineering properties of rubber-modified asphalt mixtures prepared via wet process. Int J Pavement Res Technol 14:560–569. https://doi.org/10.1007/s42947-020-1006-z

    Article  Google Scholar 

  11. Barugahare J, Amirkhanian AN, Xiao F, Amirkhanian SN (2020) ANN-based dynamic modulus models of asphalt mixtures with similar input variables as Hirsch and Witczak models. Int J Pavement Eng. https://doi.org/10.1080/10298436.2020.1799209

    Article  Google Scholar 

  12. Gong H, Sun Y, Dong Y et al (2020) Improved estimation of dynamic modulus for hot mix asphalt using deep learning. Constr Build Mater 263:119912. https://doi.org/10.1016/j.conbuildmat.2020.119912

    Article  Google Scholar 

  13. Bennert TA (2009) Dynamic modulus of hot mix asphalt, No. FHWA

  14. Azari H, Al-Khateeb G, Shenoy A, Gibson N (2007) Comparison of simple performance test |E*| of accelerated loading facility mixtures and prediction |E*|. Transp Res Rec J Transp Res Board 1998:1–9. https://doi.org/10.3141/1998-01

    Article  Google Scholar 

  15. Witczak MW (2005) Simple performance tests: summary of recommended methods and database. Transportation Research Board, New York

    Google Scholar 

  16. Bonaquist R, Christensen DW (2005) Practical procedure for developing dynamic modulus master curves for pavement structural design. Transp Res Rec J Transp Res Board 1929:208–217. https://doi.org/10.1177/0361198105192900125

    Article  Google Scholar 

  17. Bazzaz M, Darabi MK, Little DN, Garg N (2020) Effect of evotherm-M1 on properties of asphaltic materials used at NAPMRC testing facility. J Test Eval 48:20190446. https://doi.org/10.1520/JTE20190446

    Article  Google Scholar 

  18. Moussa GS, Owais M (2020) Pre-trained deep learning for hot-mix asphalt dynamic modulus prediction with laboratory effort reduction. Constr Build Mater 265:120239. https://doi.org/10.1016/j.conbuildmat.2020.120239

    Article  Google Scholar 

  19. Solatifar N, Kavussi A, Abbasghorbani M, Sivilevicius H (2017) Application of FWD data in developing dynamic modulus master curves of in-service asphalt layers. J Civ Eng Manag 23:661–671. https://doi.org/10.3846/13923730.2017.1292948

    Article  Google Scholar 

  20. Solatifar N, Kavussi A, Abbasghorbani M, Katicha SW (2019) Development of dynamic modulus master curves of in-service asphalt layers using MEPDG models. Road Mater Pavement Des 20:225–243. https://doi.org/10.1080/14680629.2017.1380688

    Article  Google Scholar 

  21. Solatifar N, Kavussi A, Abbasghorbani M (2021) Dynamic modulus predictive models for in-service asphalt layers in hot climate areas. J Mater Civ Eng 33:04020438. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003511

    Article  Google Scholar 

  22. Jamshidi A, White G, Hosseinpour M et al (2019) Characterization of effects of reclaimed asphalt pavement (RAP) source and content on dynamic modulus of hot mix asphalt concrete. Constr Build Mater 217:487–497. https://doi.org/10.1016/j.conbuildmat.2019.05.059

    Article  Google Scholar 

  23. Zhang Y, Luo R, Lytton RL (2012) Characterizing permanent deformation and fracture of asphalt mixtures by using compressive dynamic modulus tests. J Mater Civ Eng 24:898–906. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000471

    Article  Google Scholar 

  24. Zhang C, Shen S, Jia X (2017) Modification of the Hirsch dynamic modulus prediction model for asphalt mixtures. J Mater Civ Eng 29:04017241. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002099

    Article  Google Scholar 

  25. Al-Khateeb G, Shenoy A, Gibson N, Harman T (2006) A new simplistic model for dynamic modulus predictions of asphalt paving mixtures. J Assoc Asph Paving Technol 75:1254–1293

    Google Scholar 

  26. Yousefdoost S, Vuong B, Rickards I, et al (2013) Evaluation of dynamic modulus predictive models for typical Australian asphalt mixes. In: 15th AAPA international flexible pavements conference

  27. Ali Y, Irfan M, Ahmed S et al (2016) Investigation of factors affecting dynamic modulus and phase angle of various asphalt concrete mixtures. Mater Struct 49:857–868. https://doi.org/10.1617/s11527-015-0544-3

    Article  Google Scholar 

  28. Georgouli K, Loizos A, Plati C (2016) Calibration of dynamic modulus predictive model. Constr Build Mater 102:65–75. https://doi.org/10.1016/j.conbuildmat.2015.10.163

    Article  Google Scholar 

  29. Batioja-Alvarez D, Lee J, Nantung T (2019) Evaluating dynamic modulus for indiana mechanistic-empirical pavement design guide practice. Transp Res Rec J Transp Res Board 2673:346–357. https://doi.org/10.1177/0361198118823518

    Article  Google Scholar 

  30. Shafabakhsh GH, Ani OJ, Talebsafa M (2015) Artificial neural network modeling (ANN) for predicting rutting performance of nano-modified hot-mix asphalt mixtures containing steel slag aggregates. Constr Build Mater 85:136–143. https://doi.org/10.1016/j.conbuildmat.2015.03.060

    Article  Google Scholar 

  31. Leiva-Villacorta F, Vargas-Nordcbeck A (2019) Neural network based model to estimate dynamic modulus E* for mixtures in costa rica. J Soft Comput Civ Eng 3:1–15. https://doi.org/10.22115/scce.2019.188006.1110

    Article  Google Scholar 

  32. Jahangir H, Rezazadeh Eidgahee D (2021) A new and robust hybrid artificial bee colony algorithm – ANN model for FRP-concrete bond strength evaluation. Compos Struct 257:113160. https://doi.org/10.1016/j.compstruct.2020.113160

    Article  Google Scholar 

  33. Bagheri M, Chahkandi A, Jahangir H (2019) Seismic reliability analysis of RC frames rehabilitated by glass fiber-reinforced polymers. Int J Civ Eng. https://doi.org/10.1007/s40999-019-00438-x

    Article  Google Scholar 

  34. Nematzadeh M, Shahmansouri AA, Zabihi R (2021) Innovative models for predicting post-fire bond behavior of steel rebar embedded in steel fiber reinforced rubberized concrete using soft computing methods. Structures 31:1141–1162. https://doi.org/10.1016/j.istruc.2021.02.015

    Article  Google Scholar 

  35. Yu J, Yan X (2022) Data-feature-driven nonlinear process monitoring based on joint deep learning models with dual-scale. Inf Sci (Ny) 591:381–399. https://doi.org/10.1016/j.ins.2021.12.106

    Article  Google Scholar 

  36. Ceylan H, Gopalakrishnan K, Kim S (2008) Advanced approaches to hot-mix asphalt dynamic modulus prediction. Can J Civ Eng 35:699–707. https://doi.org/10.1139/L08-016

    Article  Google Scholar 

  37. Ceylan H, Gopalakrishnan K, Kim S (2009) Looking to the future: the next-generation hot mix asphalt dynamic modulus prediction models. Int J Pavement Eng 10:341–352. https://doi.org/10.1080/10298430802342690

    Article  Google Scholar 

  38. Far MSS, Underwood BS, Ranjithan SR et al (2009) Application of artificial neural networks for estimating dynamic modulus of asphalt concrete. Transp Res Rec J Transp Res Board 2127:173–186. https://doi.org/10.3141/2127-20

    Article  Google Scholar 

  39. Singh D, Zaman M, Commuri S (2013) Artificial neural network modeling for dynamic modulus of hot mix asphalt using aggregate shape properties. J Mater Civ Eng 25:54–62. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000548

    Article  Google Scholar 

  40. Le T-H, Nguyen H-L, Pham BT et al (2020) Artificial intelligence-based model for the prediction of dynamic modulus of stone mastic asphalt. Appl Sci 10:5242. https://doi.org/10.3390/app10155242

    Article  Google Scholar 

  41. Azarhoosh AR, Zojaji Z, Moghadas Nejad F (2020) Nonlinear genetic-base models for prediction of fatigue life of modified asphalt mixtures by precipitated calcium carbonate. Road Mater Pavement Des 21:850–866. https://doi.org/10.1080/14680629.2018.1513372

    Article  Google Scholar 

  42. Leon LP, Ray I (2021) Estimating unconfined compressive behavior of HMA using soft computing. Innov Infrastruct Solut 6:19. https://doi.org/10.1007/s41062-020-00386-9

    Article  Google Scholar 

  43. Gopalakrishnan K, Kim S (2011) Support vector machines approach to HMA stiffness prediction. J Eng Mech 137:138–146. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000214

    Article  Google Scholar 

  44. Liu J, Yan K, You L et al (2017) Prediction models of mixtures’ dynamic modulus using gene expression programming. Int J Pavement Eng 18:971–980. https://doi.org/10.1080/10298436.2016.1138113

    Article  Google Scholar 

  45. Jun L, Yan K, Zhao X (2017) Predicting the dynamic modulus of asphalt mixtures containing recycled asphalt shingles using artificial neural networks. DEStech Trans Eng Technol Res. https://doi.org/10.12783/dtetr/ictim2016/5470

    Article  Google Scholar 

  46. Daneshvar D, Behnood A (2020) Estimation of the dynamic modulus of asphalt concretes using random forests algorithm. Int J Pavement Eng. https://doi.org/10.1080/10298436.2020.1741587

    Article  Google Scholar 

  47. Andrei D, Witczak MW, Mirza MW (1999) Development of a revised predictive model for the dynamic (complex) modulus of asphalt mixtures (Inter Team Technical Rep. prepared for the NCHRP 1–37A Project)

  48. ASTM (2009) Standard viscosity-temperature chart for asphalts (D2493/D2493M-09). https://doi.org/10.1520/D2493_D2493M-09

  49. Bari J, Witczak MW (2006) Development of a new revised version of the Witczak E* predictive model for hot mix asphalt mixtures. J Assoc Asph Paving Technol 75:381–417

    Google Scholar 

  50. El-Badawy S, Bayomy F, Awed A (2012) Performance of MEPDG dynamic modulus predictive models for asphalt concrete mixtures: local calibration for idaho. J Mater Civ Eng 24:1412–1421. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000518

    Article  Google Scholar 

  51. Bari J, Witczak MW (2007) New predictive models for viscosity and complex shear modulus of asphalt binders. Transp Res Rec J Transp Res Board 2001:9–19. https://doi.org/10.3141/2001-02

    Article  Google Scholar 

  52. Christensen JDW, Pellinen T, Bonaquist RF (2003) Hirsch model for estimating the modulus of asphalt concrete. J Assoc Asph Paving Technol 72:97–121

    Google Scholar 

  53. Yu H, Shen S (2012) An investigation of dynamic modulus and flow number properties of asphalt mixtures in Washington State

  54. Sakhaeifar MS, Richard Kim Y, Kabir P (2015) New predictive models for the dynamic modulus of hot mix asphalt. Constr Build Mater 76:221–231. https://doi.org/10.1016/j.conbuildmat.2014.11.011

    Article  Google Scholar 

  55. AASHTO T 342-11 (2019) Standard method of test for determining dynamic modulus of hot-mix asphalt concrete mixtures

  56. Gedafa DS, Hossain M, Romanoschi S, Gisi AJ (2010) Field verification of superpave dynamic modulus. J Mater Civ Eng 22:485–494. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000048

    Article  Google Scholar 

  57. Khattab AM, El-Badawy SM, Al Hazmi AA, Elmwafi M (2014) Evaluation of Witczak E* predictive models for the implementation of AASHTOWare-Pavement ME Design in the Kingdom of Saudi Arabia. Constr Build Mater 64:360–369. https://doi.org/10.1016/j.conbuildmat.2014.04.066

    Article  Google Scholar 

  58. Biligiri KP, Way GB (2014) Predicted E* dynamic moduli of the Arizona mixes using asphalt binders placed over a 25-year period. Constr Build Mater 54:520–532. https://doi.org/10.1016/j.conbuildmat.2013.12.069

    Article  Google Scholar 

  59. Karimipour A, Jahangir H, Rezazadeh Eidgahee D (2021) A thorough study on the effect of red mud, granite, limestone and marble slurry powder on the strengths of steel fibres-reinforced self-consolidation concrete: Experimental and numerical prediction. J Build Eng 44:103398. https://doi.org/10.1016/j.jobe.2021.103398

    Article  Google Scholar 

  60. Rezazadeh Eidgahee D, Rafiean AH, Haddad A (2020) A Novel formulation for the compressive strength of IBP-based geopolymer stabilized clayey soils using ANN and GMDH-NN approaches. Iran J Sci Technol Trans Civ Eng 44:219–229. https://doi.org/10.1007/s40996-019-00263-1

    Article  Google Scholar 

  61. Naderpour H, Rezazadeh Eidgahee D, Fakharian P et al (2020) A new proposed approach for moment capacity estimation of ferrocement members using group method of data handling. Eng Sci Technol an Int J 23:382–391. https://doi.org/10.1016/j.jestch.2019.05.013

    Article  Google Scholar 

  62. Rezazadeh Eidgahee D, Haddad A, Naderpour H (2019) Evaluation of shear strength parameters of granulated waste rubber using artificial neural networks and group method of data handling. Sci Iran 26:3233–3244. https://doi.org/10.24200/sci.2018.5663.1408

    Article  Google Scholar 

  63. Farhangi V, Jahangir H, Rezazadeh Eidgahee D et al (2021) Behaviour investigation of SMA-equipped bar hysteretic dampers using machine learning techniques. Appl Sci 11:10057. https://doi.org/10.3390/app112110057

    Article  Google Scholar 

  64. Naderpour H, Nagai K, Fakharian P, Haji M (2019) Innovative models for prediction of compressive strength of FRP-confined circular reinforced concrete columns using soft computing methods. Compos Struct 215:69–84. https://doi.org/10.1016/j.compstruct.2019.02.048

    Article  Google Scholar 

  65. Khademi A, Behfarnia K, Kalman Šipoš T, Miličević I (2021) The use of machine learning models in estimating the compressive strength of recycled brick aggregate concrete. Comput Eng Phys Model 4:1–25. https://doi.org/10.22115/cepm.2021.297016.1181

    Article  Google Scholar 

  66. Andrei D, Witcza MW, Mirza W (1999) NCHRP 1-37 A, development of the 2002 guide for the design of new and rehabilitated pavement structures, APPENDIX CC-4: development of a revised predictive model for the dynamic (complex) modulus of asphalt mixtures

  67. Yao X (1999) Evolving artificial neural networks. Proc IEEE 87:1423–1447. https://doi.org/10.1109/5.784219

    Article  Google Scholar 

  68. Pan C, Yao X (2021) Neural architecture search based on evolutionary algorithms with fitness approximation. In: 2021 International joint conference on neural networks. IEEE, pp 1–8

  69. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133. https://doi.org/10.1007/BF02478259

    Article  MathSciNet  MATH  Google Scholar 

  70. Naderpour H, Rafiean AH, Fakharian P (2018) Compressive strength prediction of environmentally friendly concrete using artificial neural networks. J Build Eng 16:213–219. https://doi.org/10.1016/j.jobe.2018.01.007

    Article  Google Scholar 

  71. Mashrei MA, Seracino R, Rahman MS (2013) Application of artificial neural networks to predict the bond strength of FRP-to-concrete joints. Constr Build Mater 40:812–821. https://doi.org/10.1016/j.conbuildmat.2012.11.109

    Article  Google Scholar 

  72. Anastasakis L, Mort N (2001) The development of self-organization techniques in modelling: a review of the group method of data handling (GMDH)

  73. Müller J-A, Ivachnenko AG, Lemke F (1998) GMDH algorithms for complex systems modelling. Math Comput Model Dyn Syst 4:275–316. https://doi.org/10.1080/13873959808837083

    Article  MATH  Google Scholar 

  74. Madala H (1991) Comparison of inductive versus deductive learning networks. Complex Syst 5:239–258

    MathSciNet  MATH  Google Scholar 

  75. Ivakhnenko AG (1976) The group method of data handling in prediction problems. Sov Autom Control 9:21–30

    MathSciNet  Google Scholar 

  76. Ivakhnenko AG (1968) The group method of data of handling; a rival of the method of stochastic approximation. Sov Autom Control 13:43–55

    Google Scholar 

  77. Muller JA, Ivakhnenko AG (1996) Self-organizing modelling in analysis and prediction of stock market. In: Proceedings of the second international conference on application fuzzy system soft computing, pp 491–500

  78. Ivakhnenko AG (1970) Heuristic self-organization in problems of engineering cybernetics. Automatica 6:207–219. https://doi.org/10.1016/0005-1098(70)90092-0

    Article  Google Scholar 

  79. Ivakhnenko AG, Krotov GI, Stepashko VS (1983) Harmonic and exponential harmonic GMDH algorithms. Part 2. Multilayer algorithms with and without calculation of remainders. Sov Autom Control c/c Avtom 16:1–9

    Google Scholar 

  80. Mousavi SM, Alavi AH, Mollahasani A et al (2013) Formulation of soil angle of shearing resistance using a hybrid GP and OLS method. Eng Comput 29:37–53. https://doi.org/10.1007/s00366-011-0242-x

    Article  Google Scholar 

  81. Koza JR, Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection, vol 1. MIT press, New York

    MATH  Google Scholar 

  82. Gandomi AH, Alavi AH, Arjmandi P et al (2010) Genetic programming and orthogonal least squares: a hybrid approach to modeling the compressive strength of CFRP-confined concrete cylinders. Ournal Mech Mater Struct 5:735–753

    Article  Google Scholar 

  83. Lim JC, Karakus M, Ozbakkaloglu T (2016) Evaluation of ultimate conditions of FRP-confined concrete columns using genetic programming. Comput Struct 162:28–37. https://doi.org/10.1016/j.compstruc.2015.09.005

    Article  Google Scholar 

  84. Shen J, Jimenez R (2018) Predicting the shear strength parameters of sandstone using genetic programming. Bull Eng Geol Environ 77:1647–1662. https://doi.org/10.1007/s10064-017-1023-6

    Article  Google Scholar 

  85. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441. https://doi.org/10.1137/0111030

    Article  MathSciNet  MATH  Google Scholar 

  86. Demuth H, Beale M (2009) Matlab neural network toolbox user’s guide version 6

  87. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366. https://doi.org/10.1016/0893-6080(89)90020-8

    Article  MATH  Google Scholar 

  88. Silva S (2007) GPLAB—a genetic programming toolbox for MATLAB, version 3. 13–15

  89. Jahangir H, Esfahani MR (2018) Numerical study of bond—slip mechanism in advanced externally bonded strengthening composites. KSCE J Civ Eng 22:4509–4518. https://doi.org/10.1007/s12205-018-1662-6

    Article  Google Scholar 

  90. Onyelowe KC, Rezazadeh Eidgahee D, Jahangir H et al (2022) Forecasting shear parameters, and sensitivity and error analyses of treated subgrade soil. Transp Infrastruct Geotechnol. https://doi.org/10.1007/s40515-022-00225-7

    Article  Google Scholar 

  91. Kuo YL, Jaksa MB, Lyamin AV, Kaggwa WS (2009) ANN-based model for predicting the bearing capacity of strip footing on multi-layered cohesive soil. Comput Geotech 36:503–516. https://doi.org/10.1016/j.compgeo.2008.07.002

    Article  Google Scholar 

  92. Milne L (1995) Feature selection using neural networks with contribution measures. In: AI-CONFERENCE. World Scientific Publishing, pp 571–571

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hashem Jahangir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezazadeh Eidgahee, D., Jahangir, H., Solatifar, N. et al. Data-driven estimation models of asphalt mixtures dynamic modulus using ANN, GP and combinatorial GMDH approaches. Neural Comput & Applic 34, 17289–17314 (2022). https://doi.org/10.1007/s00521-022-07382-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07382-3

Keywords

Navigation