Skip to main content
Log in

A hybrid metaheuristic approach using random forest and particle swarm optimization to study and evaluate backbreak in open-pit blasting

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Backbreak is a rock fracture problem that exceeds the limits of the last row of holes in an explosion operation. Excessive backbreak increases operational costs and also poses a threat to mine safety. In this regard, a new hybrid intelligence approach based on random forest (RF) and particle swarm optimization (PSO) is proposed for predicting backbreak with high accuracy to reduce the unsolicited phenomenon induced by backbreak in open-pit blasting. A data set of 234 samples with six input parameters including special drilling (SD), spacing (S), burden (B), hole length (L), stemming (T) and powder factor (PF) and one output parameter backbreak (BB) is set up in this study. Seven input combinations (one with six parameters, six with five parameters) are built to generate the optimal prediction model. The PSO algorithm is integrated with the RF algorithm to find the optimal hyper-parameters of each model and the fitness function, which is the mean absolute error (MAE) of ten cross-validations. The performance capacities of the optimal models are assessed using MAE, root-mean-square error (RMSE), Pearson correlation coefficient (R2) and mean absolute percentage error (MAPE). Findings demonstrated that the PSO–RF model combining L–S–B–T–PF with MAE of 0.0132 and 0.0568, RMSE of 0.0811 and 0.1686, R2 of 0.9990 and 0.9961 and MAPE of 0.0027 and 0.0116 in training and testing phases, respectively, has optimal prediction performance. The optimal PSO–RF models were compared with the classical artificial neural network, RF, genetic programming, support vector machine and convolutional neural network models and show that the PSO–RF model has superiority in predicting backbreak. The Gini index of each input variable has also been calculated in the RF model, which was 31.2 (L), 23.1 (S), 27.4 (B), 36.6 (T), 23.4 (PF) and 16.9 (SD), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alemdag S, Gurocak Z, Cevik A, Cabalar AF, Gokceoglu C (2016) Modeling deformation modulus of a stratified sedimentary rock mass using neural network, fuzzy inference and genetic programming. Eng Geol 203:70–82. https://doi.org/10.1016/j.enggeo.2015.12.002

    Article  Google Scholar 

  2. Armaghani DJ, Hajihassani M, Mohamad ET, Marto A, Noorani SA (2014) Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization. Arab J Geosci 7(12):5383–5396. https://doi.org/10.1007/s12517-013-1174-0

    Article  Google Scholar 

  3. Armaghani DJ, Yagiz S, Mohamad ET, Zhou J (2021) Prediction of TBM performance in fresh through weathered granite using empirical and statistical approaches. Tunn Undergr Space Technol 118:104183

    Article  Google Scholar 

  4. Beiki M, Bashari A, Majdi A (2010) Genetic programming approach for estimating the deformation modulus of rock mass using sensitivity analysis by neural network. Int J Rock Mech Min 47(7):1091–1103. https://doi.org/10.1016/j.ijrmms.2010.07.007

    Article  Google Scholar 

  5. Berta G (1990) Explosives: an engineering tool. Italesplosivi, Millano

  6. Bhandari AK, Kumar A, Singh GK (2015) Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur’s, Otsu and Tsallis functions. Expert Syst Appl 42(3):1573–1601. https://doi.org/10.1016/j.eswa.2014.09.049

    Article  Google Scholar 

  7. Biourge V, Delmotte S, Feugier A, Bradley R, McAllister M, Elliott J (2020) An artificial neural network-based model to predict chronic kidney disease in aged cats. J Vet Intern Med 34(5):1920–1931. https://doi.org/10.1111/jvim.15892

    Article  Google Scholar 

  8. Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. CRC Press

    MATH  Google Scholar 

  9. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  10. Brenning A (2012) Spatial cross-validation, bootstrap for the assessment of prediction rules in remote sensing: the R package sperrorest. In 2012 IEEE international geoscience and remote sensing symposium, pp 5372–5375. https://doi.org/10.1109/IGARSS.2012.6352393

  11. Civicioglu P (2012) Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Comput Geosci 46:229–247. https://doi.org/10.1016/j.cageo.2011.12.011

    Article  Google Scholar 

  12. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS'95. proceedings of the sixth international symposium on micro machine and human science, 4–6 Oct. 1995, New York, NY, USA, IEEE. https://doi.org/10.1109/MHS.1995.494215

  13. Ebrahimi E, Monjezi M, Khalesi MR, Armaghani DJ (2016) Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm. Bull Eng Geol Environ 75(1):27–36. https://doi.org/10.1007/s10064-015-0720-2

    Article  Google Scholar 

  14. Eskandar H, Heydari E, Hasanipanah M, Masir MJ, Derakhsh AM (2018) Feasibility of particle swarm optimization and multiple regression for the prediction of an environmental issue of mine blasting. Eng Comput 35(1):363–376. https://doi.org/10.1108/EC-01-2017-0040

    Article  Google Scholar 

  15. Esmaeili M, Osanloo M, Rashidinejad F, Bazzazi AA, Taji M (2014) Multiple regression, ANN and ANFIS models for prediction of backbreak in the open pit blasting. Eng Comput 30(4):549–558. https://doi.org/10.1007/s00366-012-0298-2

    Article  Google Scholar 

  16. Faradonbeh RS, Monjezi M, Armaghani DJ (2016) Genetic programing and non-linear multiple regression techniques to predict backbreak in blasting operation. Eng Comput 32(1):123–133. https://doi.org/10.1007/s00366-015-0404-3

    Article  Google Scholar 

  17. Ferentinou M, Fakir M (2018) Integrating rock engineering systems device and artificial neural networks to predict stability conditions in an open pit. Eng Geol 246:293–309. https://doi.org/10.1016/j.enggeo.2018.10.010

    Article  Google Scholar 

  18. Gates WCB, Ortiz LT, Florez RM (2005) Analysis of rockfall and blasting backbreak problems, US 550, Molas Pass, CO. In: 40th US Rock Mechanics Symposium: Rock Mechanics for Energy, Mineral, Infrastructure Development in the Northern Regions, ALASKA ROCKS 2005, June 25, 2005–June 29, 2005, Anchorage, AK, United states, American Rock Mechanics Association (ARMA)

  19. Ghasemi E (2017) Particle swarm optimization approach for forecasting backbreak induced by bench blasting. Neural Comput Appl 28(7):1855–1862. https://doi.org/10.1007/s00521-016-2182-2

    Article  MathSciNet  Google Scholar 

  20. Ghasemi E, Amnieh HB, Bagherpour R (2016) Assessment of backbreak due to blasting operation in open pit mines: a case study. Environ Earth Sci 75(7). https://doi.org/10.1007/s12665-016-5354-6

  21. Goh ATC, Goh SH (2007) Support vector machines: their use in geotechnical engineering as illustrated using seismic liquefaction data. Comput Geotech 34(5):410–421. https://doi.org/10.1016/j.compgeo.2007.06.001

    Article  Google Scholar 

  22. Gong WP, Luo Z, Juang CH, Huang HW, Zhang J, Wang L (2014) Optimization of site exploration program for improved prediction of tunneling-induced ground settlement in clays. Comput Geotech 56:69–79. https://doi.org/10.1016/j.compgeo.2013.10.008

    Article  Google Scholar 

  23. Hasanipanah M, Bakhshandeh AH (2021) Developing a new uncertain rule-based fuzzy approach for evaluating the blast-induced backbreak. Eng Comput 37:1879–1893. https://doi.org/10.1007/s00366-019-00919-6

    Article  Google Scholar 

  24. Hasanipanah M, Shahnazar A, Arab H, Golzar SB, Amiri M (2017) Developing a new hybrid-AI model to predict blast-induced backbreak. Eng Comput 33(3):349–359. https://doi.org/10.1007/s00366-016-0477-7

    Article  Google Scholar 

  25. He M, Zhang Z, Li N (2021) Deep convolutional neural network-based method for strength parameter prediction of jointed rock mass using drilling logging data. Int J Geomech 21(7). https://doi.org/10.1061/(ASCE)GM.1943-5622.0002074

  26. Hosseini SA, Tavana A, Abdolahi SM, Darvishmaslak S (2019) Prediction of blast-induced ground vibrations in quarry sites: a comparison of GP, RSM and MARS. Soil Dyn Earthq Eng 119:118–129. https://doi.org/10.1016/j.soildyn.2019.01.011

    Article  Google Scholar 

  27. Huang G, Xiao L (2021) Failure mode and effect analysis: an interval-valued intuitionistic fuzzy cloud theory-based method. Appl Soft Comput 98: 106834.

  28. Iphar M, Yavuz M, Ak H (2008) Prediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference system. Environ Geol 56(1):97–107. https://doi.org/10.1016/j.asoc.2020.106834

    Article  Google Scholar 

  29. Jamasb A, Motavalli-Anbaran SH, Zeyen H (2017) Non-linear stochastic inversion of gravity data via quantum-behaved particle swarm optimisation: application to Eurasia-Arabia collision zone (Zagros, Iran). Geophys Prospect 65:274–294. https://doi.org/10.1111/1365-2478.12558

    Article  Google Scholar 

  30. Jimeno CJ, EL; Carcedo FJA (1995) Drilling and blasting of rocks. Balkema, Rotterdam

  31. Lundborg N (1974) The hazards of fly rock in rock blasting. Report DS1974, Swedish Detonic Res Found (SveDeFo), Stockholm

  32. Khan MSA, Abdullah S (2018) Interval-valued Pythagorean fuzzy GRA method for multiple-attribute decision making with incomplete weight information. Int J Intell Syst 33(8):1689–1716. https://doi.org/10.1002/int.21992

    Article  Google Scholar 

  33. Khandelwal M, Monjezi M (2013) Prediction of backbreak in open-pit blasting operations using the machine learning method. Rock Mech Rock Eng 46(2):389–396. https://doi.org/10.1007/s00603-012-0269-3

    Article  Google Scholar 

  34. Khandelwal M, Singh TN (2013) Application of an expert system to predict maximum explosive charge used per delay in surface mining. Rock Mech Rock Eng 46(6):1551–1558. https://doi.org/10.1007/s00603-013-0368-9

    Article  Google Scholar 

  35. Khandelwal M, Mahdiyar A, Armaghani DJ et al (2017) An expert system based on hybrid ICA-ANN technique to estimate macerals contents of Indian coals. Environ Earth Sci 76:399. https://doi.org/10.1007/s12665-017-6726-2

    Article  Google Scholar 

  36. Khandelwal M, Singh TN (2011) Predicting elastic properties of schistose rocks from unconfined strength using intelligent approach. Arab J Geosci 4:435–442. https://doi.org/10.1007/s12517-009-0093-6

    Article  Google Scholar 

  37. Kumar S, Mishra AK, Choudhary BS (2021) Prediction of back break in blasting using random decision trees. Eng Comput. https://doi.org/10.1007/s00366-020-01280-9

    Article  Google Scholar 

  38. Li DT, Yan JL, Zhang L (2012) Prediction of blast-induced ground vibration using support vector machine by tunnel excavation. Appl Mech Mater pp1414–1418. https://doi.org/10.4028/www.scientific.net/AMM.170-173.1414

  39. Li N, Jimenez R (2018) A logistic regression classifier for long-term probabilistic prediction of rock burst hazard. Nat Hazards 90(1):197–215. https://doi.org/10.1007/s11069-017-3044-7

    Article  Google Scholar 

  40. Li E, Yang F, Ren M, Zhang X, Zhou J, Khandelwal M (2021) Prediction of blasting mean fragment size using support vector regression combined with five optimization algorithms. J Rock Mech Geotech Eng 13(6):1380–1397

    Article  Google Scholar 

  41. Li Z, Chen L (2019) A novel evidential FMEA method by integrating fuzzy belief structure and grey relational projection method. Eng Appl Artif Intel 77:136–147. https://doi.org/10.1016/j.engappai.2018.10.005

    Article  Google Scholar 

  42. Li E, Zhou J, Shi X, Armaghani DJ, Yu Z, Chen X, Huang P (2021) Developing a hybrid model of salp swarm algorithm based support vector machine to predict the strength of fiber reinforced cemented paste backfill. Eng Comput 37(4):3519–3540. https://doi.org/10.1007/s00366-020-01014-x

    Article  Google Scholar 

  43. Liang WZ, Zhao GY, Wang X, Zhao J, Ma CD (2019) Assessing the rockburst risk for deep shafts via distance-based multi-criteria decision making approaches with hesitant fuzzy information. Eng Geol 260:12. https://doi.org/10.1016/j.enggeo.2019.105211

    Article  Google Scholar 

  44. Liao X, Khandelwal M, Yang H et al (2020) Effects of a proper feature selection on prediction and optimization of drilling rate using intelligent techniques. Eng Comput 36:499–510. https://doi.org/10.1007/s00366-019-00711-6

    Article  Google Scholar 

  45. Liu Y, Gu Z, Hughes DJ, Ye J, Hou X (2021) Understanding mixed mode ratio of adhesively bonded joints using genetic programming (GP). Compos Struct 258:113389. https://doi.org/10.1016/j.compstruct.2020.113389

    Article  Google Scholar 

  46. Mirghasemi S, Andreae P, Zhang MJ (2019) Domain-independent severely noisy image segmentation via adaptive wavelet shrinkage using particle swarm optimization and fuzzy C-means. Expert Syst Appl 133:126–150. https://doi.org/10.1016/j.eswa.2019.04.050

    Article  Google Scholar 

  47. Moeinossadat SR, Ahangari K, Shahriar K (2018) Modeling maximum surface settlement due to EPBM tunneling by various soft computing techniques. Innov Infrastruct So 3(1):13. https://doi.org/10.1007/s41062-017-0114-3

    Article  Google Scholar 

  48. Mohammadnejad M, Gholami R, Sereshki F, Jamshidi A (2013) A new methodology to predict backbreak in blasting operation. Int J Rock Mech Min 60:75–81. https://doi.org/10.1016/j.ijrmms.2012.12.019

    Article  Google Scholar 

  49. Monjezi M, Mohamadi HA, Barati B, Khandelwal M (2014) Application of soft computing in predicting rock fragmentation to reduce environmental blasting side effects. Arab J Geosci 7:505–511. https://doi.org/10.1007/s12517-012-0770-8

    Article  Google Scholar 

  50. Monjezi M, Rizi SH, Majd VJ, Khandelwal M (2014) Artificial neural network as a tool for backbreak prediction. Geotech Geol Eng 32(1):21–30. https://doi.org/10.1007/s10706-013-9686-7

    Article  Google Scholar 

  51. Monjezi M, Ahmadi Z, Varjani AY, Khandelwal M (2013) Backbreak prediction in the Chadormalu iron mine using artificial neural network. Neural Comput Appl 23(3–4):1101–1107. https://doi.org/10.1007/s00521-012-1038-7

    Article  Google Scholar 

  52. Monjezi M, Singh TN, Khandelwal M, Sinha S, Singh V, Hosseini I (2006) Prediction and analysis of blast parameters using artificial neural network. Noise Vib Worldwide 37(5):8–16. https://doi.org/10.1260/095745606777630323

    Article  Google Scholar 

  53. Monjezi M, Khoshalan HA, Varjani AY (2012) Prediction of flyrock and backbreak in open pit blasting operation: a neuro-genetic approach. Arab J Geosci 5(3):441–448. https://doi.org/10.1007/s12517-010-0185-3

    Article  Google Scholar 

  54. Monjezi M, Rezaei M, Yazdian A (2010) Prediction of backbreak in open-pit blasting using fuzzy set theory. Expert Syst Appl 37(3):2637–2643. https://doi.org/10.1016/j.eswa.2009.08.014

    Article  Google Scholar 

  55. Nabiollahi K, Taghizadeh-Mehrjardi R, Shahabi A, Heung B, Amirian-Chakan A, Davari M, Scholten T (2021) Assessing agricultural salt-affected land using digital soil mapping and hybridized random forests. Geoderma 385:114858. https://doi.org/10.1016/j.geoderma.2020.114858

    Article  Google Scholar 

  56. Ray U, Chouhan U, Verma N (2020) Comparative study of machine learning approaches for classification and prediction of selective caspase-3 antagonist for Zika virus drugs. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04626-7

    Article  Google Scholar 

  57. Roth J (1979) A model for the determination of flyrock range as a function of shot condition. US Bureau of Mines Contract J0387242. Management Science Associates: p 61

  58. Sari M, Ghasemi E, Ataei M (2014) Stochastic modeling approach for the evaluation of backbreak due to blasting operations in open pit mines. Rock Mech Rock Eng 47(2):771–783. https://doi.org/10.1007/s00603-013-0438-z

    Article  Google Scholar 

  59. Sayadi A, Monjezi M, Talebi N, Khandelwal M (2013) A comparative study on the application of various artificial neural networks to simultaneous prediction of rock fragmentation and backbreak. J Rock Mech Geotech 5(4):318–324. https://doi.org/10.1016/j.jrmge.2013.05.007

    Article  Google Scholar 

  60. Seo JH, Im CH, Heo CG, Kim JK, Jung HK, Lee CG (2006) Multimodal function optimization based on particle swarm optimization. IEEE Trans Magn 42(4):1095–1098. https://doi.org/10.1109/TMAG.2006.871568

    Article  Google Scholar 

  61. Sharma M, Choudhary BS, Agrawal H (2021) Prediction and assessment of back break by multivariate regression analysis, and random forest algorithm in hot strata/fiery seam of open-pit coal mine. https://doi.org/10.21203/rs.3.rs-267513/v1

  62. Wang H, Zhang YM, Yang Z (2019) A risk evaluation method to prioritize failure modes based on failure data and a combination of fuzzy sets theory and grey theory. Eng Appl Artif Intel 82:216–225. https://doi.org/10.1016/j.engappai.2019.03.023

    Article  Google Scholar 

  63. Wang SM, Zhou J, Li CQ, Armaghani DJ, Li XB, Mitri HS (2021) Rockburst prediction in hard rock mines developing bagging and boosting tree-based ensemble techniques. J Cent South Univ 28(2):527–542. https://doi.org/10.1007/s11771-021-4619-8

    Article  Google Scholar 

  64. Wang Y, Lu C, Zuo C (2015) Coal mine safety production forewarning based on improved BP neural network. Int J Min Sci Techno 25(2):319–324. https://doi.org/10.1016/j.ijmst.2015.02.023

    Article  Google Scholar 

  65. Wu QH, Song T, Liu HM, Yan XS (2017) Particle swarm optimization algorithm based on parameter improvements. J Comput Methods Sci 17(3):557–568. https://doi.org/10.3233/JCM-170742

    Article  Google Scholar 

  66. Yin X, Liu QS, Pan YC, Huang X, Wu J, Wang XY (2021) Strength of stacking technique of ensemble learning in rockburst prediction with imbalanced data: comparison of eight single and ensemble models. Nat Resour Res 30(2):1795–1815. https://doi.org/10.1007/s11053-020-09787-0

    Article  Google Scholar 

  67. Yu Z, Shi X, Zhou J, Gou Y, Huo X, Zhang J, Armaghani DJ (2020) A new multikernel relevance vector machine based on the HPSOGWO algorithm for predicting and controlling blast-induced ground vibration. Eng Comput. https://doi.org/10.1007/s00366-020-01136-2

    Article  Google Scholar 

  68. Zhang P, Wu HN, Chen RP, Chan TH (2020) Hybrid meta-heuristic and machine learning algorithms for tunneling-induced settlement prediction: a comparative study. Tunn Undergr Sp Tech 99:103383. https://doi.org/10.1016/j.tust.2020.103383

    Article  Google Scholar 

  69. Zhang P, Yin ZY, Jin YF, Chan THT (2020) A novel hybrid surrogate intelligent model for creep index prediction based on particle swarm optimization and random forest. Eng Geol 265:105328. https://doi.org/10.1016/j.enggeo.2019.105328

    Article  Google Scholar 

  70. Zhang X, Jin F, Liu P (2013) A grey relational projection method for multi-attribute decision making based on intuitionistic trapezoidal fuzzy number. Appl Math Model 37(5):3467–3477. https://doi.org/10.1016/j.apm.2012.08.012

    Article  MathSciNet  MATH  Google Scholar 

  71. Zhang X, Nguyen H, Choi Y, Bui XN, Zhou J (2021) Novel Extreme Learning Machine-Multi-Verse Optimization Model for Predicting Peak Particle Velocity Induced by Mine Blasting. Nat Resour Res 30(6):4735–4751

    Article  Google Scholar 

  72. Zhao C, He J, Zhang X, Qi X, Chen A (2015) Recognition of driving postures by nonsubsampled contourlet transform and k-nearest neighbor classifier. Comput Syst Sci Eng 30(3):233–241. https://doi.org/10.1049/iet-its.2011.0116

    Article  Google Scholar 

  73. Zhao H, Li S, Ru Z (2017) Adaptive reliability analysis based on a support vector machine and its application to rock engineering. Appl Math Model 44:508–522. https://doi.org/10.1016/j.apm.2017.02.020

    Article  MATH  Google Scholar 

  74. Zhou J, Li X, Mitri HS (2016) Classification of rockburst in underground projects: comparison of ten supervised learning methods. J Comput Civil Eng 30(5):04016003. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000553

    Article  Google Scholar 

  75. Zhou J, Li XB, Shi XZ (2012) Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines. Safety Sci 50(4):629–644. https://doi.org/10.1016/j.ssci.2011.08.065

    Article  Google Scholar 

  76. Zhou J, Li E, Wei H, Li C, Qiao Q, Armaghani DJ (2019) Random forests and cubist algorithms for predicting shear strengths of rockfill materials. Appl Sci 9(8):1621. https://doi.org/10.3390/app9081621

    Article  Google Scholar 

  77. Zhou J, Asteris PG, Armaghani DJ, Pham BT (2020) Prediction of ground vibration induced by blasting operations through the use of the Bayesian Network and random forest models. Soil Dyn Earthq Eng 139:106390. https://doi.org/10.1016/j.soildyn.2020.106390

    Article  Google Scholar 

  78. Zhou J, Shi X, Du K, Qiu X, Li X, Mitri HS (2017) Feasibility of random-forest approach for prediction of ground settlements induced by the construction of a shield-driven tunnel. Int J Geomech 17(6):04016129. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000817

    Article  Google Scholar 

  79. Zhou J, Dai Y, Khandelwal M, Monjezi M, Yu Z, Qiu Y (2021) Performance of hybrid SCA-RF and HHO-RF models for predicting backbreak in open-pit mine blasting operations. Nat Resour Res. https://doi.org/10.1007/s11053-021-09929-y

    Article  Google Scholar 

  80. Zhou J, Qiu Y, Armaghani DJ, Zhang W, Li C, Zhu S, Tarinejad R (2021) Predicting TBM penetration rate in hard rock condition: a comparative study among six XGB-based metaheuristic techniques. Geosci Front 12(3):101091. https://doi.org/10.1016/j.gsf.2020.09.020

    Article  Google Scholar 

  81. Zhou J, Qiu Y, Zhu S, Armaghani DJ, Li C, Nguyen H, Yagiz S (2021) Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate. Eng Appl Artif Intel 97:104015. https://doi.org/10.1016/j.engappai.2020.104015

    Article  Google Scholar 

  82. Zhou J, Qiu Y, Khandelwal M et al (2021) Developing a hybrid model of Jaya algorithm-based extreme gradient boosting machine to estimate blast-induced ground vibrations. Int J Rock Mech Min Sci 145:104856

    Article  Google Scholar 

  83. Zhou J, Shen X, Qiu Y, Li E, Rao D, Shi X (2021) Improving the efficiency of microseismic source locating using a heuristic algorithm-based virtual field optimization method. Geomech Geophys Geo-energ Geo-resour 7:89. https://doi.org/10.1007/s40948-021-00285-y

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by National Science Foundation of China (42177164) and the Innovation-Driven Project of Central South University (No. 2020CX040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manoj Khandelwal or Jian Zhou.

Ethics declarations

Conflict of interest

All the authors declare that they have NO affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Khandelwal, M., Qiu, Y. et al. A hybrid metaheuristic approach using random forest and particle swarm optimization to study and evaluate backbreak in open-pit blasting. Neural Comput & Applic 34, 6273–6288 (2022). https://doi.org/10.1007/s00521-021-06776-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06776-z

Keywords

Navigation