Skip to main content

Advertisement

Log in

Prediction of flyrock and backbreak in open pit blasting operation: a neuro-genetic approach

التنبؤ flyrock و backbreak في حفرة مفتوحة التفجير العملية : نهج الاعصاب الوراثية

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

An ideally performed blasting operation enormously influences the mining overall cost. This aim can be achieved by proper prediction and attenuation of flyrock and backbreak. Poor performance of the empirical models has urged the application of new approaches. In this paper, an attempt has been made to develop a new neuro-genetic model for predicting flyrock and backbreak in Sungun copper mine, Iran. Recognition of the optimum model with this method as compared with the classic neural networks is faster and convenient. Genetic algorithm was utilized to optimize neural network parameters. Parameters such as number of neurons in hidden layer, learning rate, and momentum were considered in the model construction. The performance of the model was examined by statistical method in which absolutely higher efficiency of neuro-genetic modeling was proved. Sensitivity analysis showed that the most influential parameters on flyrock are stemming and powder factor, whereas for backbreak, stemming and charge per delay are the most effective parameters.

Abstract

تنفيذ عملية التفجير يؤثر بشكل كبير من الناحية المثالية تكاليف التعدين عموما. ويمكن تحقيق هذا الهدف عن طريق التنبؤ السليم وتخفيف flyrock وbackbreak. وحثت ضعف الأداء من نماذج تجريبية لتطبيق النهج الجديد. في هذه الورقة ، وقد بذلت محاولة لوضع نموذج جديد الاعصاب الوراثية للتنبؤ flyrock وbackbreak في منجم للنحاس Sungun وإيران. الاعتراف النموذج الأمثل مع هذا الأسلوب بالمقارنة مع الشبكة العصبية الكلاسيكي هو أسرع ومريحة. واستخدم الخوارزمية الجينية لتحسين المعلمات الشبكة العصبية. واعتبرت معلمات مثل عدد الخلايا العصبية في طبقة خفية ، معدل التعلم والزخم في بناء النموذج. تم فحص أداء نموذج من الأسلوب الإحصائي الذي ثبت كفاءة أعلى على الاطلاق من وضع نماذج الاعصاب الوراثية. حساسية التحليل أظهرت أن المعلمات الأكثر تأثيرا على flyrock هي النابعة ومسحوق للعامل في حين backbreak الناشئة والمسؤول عن تأخير في والمعلمات الأكثر فعالية.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baheer I (2000) Selection of methodology for modeling hysteresis behavior of soils using neural networks. Journal of Compuert Aided Civil Infrastructure Engineering 5(6):445–63

    Article  Google Scholar 

  • Bajpayee TS, Rehak TR, Mowrey GL, Ingram DK (2000) A summary of fatal accidents due to flyrock and lack of blast area security in surface mining, 1989–1999. Proceedings of the 27th annual conference on explosives and blasting technique, vol I. International Society of Explosives Engineers, Cleveland

    Google Scholar 

  • Bhandari S (1997) Engineering rock blasting operations. A.A. Balkema, Rotterdam

    Google Scholar 

  • Bornholdt S, Graudenz D (1992) General asymmetric neural networks and structure design by genetic algorithms. Neural Netw 5:327–334

    Article  Google Scholar 

  • De Jong KA (1975) Analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis. University of Michigan, Ann Arbor

  • Finol J, Guo YK, Dong Jing X (2001) A rule-based fuzzy model for the prediction of petro-physical rock parameters. J Petrol Sci Eng 29:97–113

    Article  Google Scholar 

  • Fletcher LR, D’Andrea DV (1986) Control of flyrock in blasting. Proceedings of the 12th annual conference on explosives and blasting technique. International Society of Explosives Engineers, Cleveland, pp 167–177

    Google Scholar 

  • Fogel DB, Fogel LJ, Porto VW (1990) Evolving neural networks. Biol Cybern 63:487–493

    Article  Google Scholar 

  • Gate WC, Ortiz BLT, Florez RM (2005) Analysis of rock fall and blasting backbreak problems. Proceedings of the American rock mechanics conference 5:671–680

    Google Scholar 

  • Gen M, Cheng R (2000) Genetic algorithms and engineering optimization. Ashikaga Institute of Technology, Ashikaga, Wiley-Interstice publication

    Google Scholar 

  • Gokceoglu C, Zorlu K (2004) A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock. Eng Appl Artif Intell 17:61–72

    Article  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading

    Google Scholar 

  • Grima A, Verhoef PNW (1999) Forecasting rock trencher performance using fuzzy logic. Int J Rock Mech Min Sci 36(4):413–432

    Article  Google Scholar 

  • Haupt RL, Haupt SE (2004) Practical Genetic Algorithms, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Hegazy T, Moselhi O, Fazio P (1994) Developing practical neural network applications using back-propagation. Microcomput Civ Eng 9:145–159

    Article  Google Scholar 

  • Heisterman J (1989) Parallel algorithms for learning in neural networks with evolution strategy. Parallel Comput 12

  • Heisterman J (1990) Learning in neural nets by genetic algorithms. Proceeding of Parallel Processing in Neural Systems and Computers (ICNC). Elsevier, Amsterdam, pp 165–168

  • Holland J (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Holmeberg R, Persson G (1976) The effect of stemming on the distance of throw of flyrock in connection with hole diameters. Swedish Detonic Research Foundation, Stockholm: Report DS 1

  • Hustrulid W (1999) Blasting principles for open pit mining, vol 1. A.A. Balkema, Rotterdam

    Google Scholar 

  • Institute of Makers of Explosives (IME) (1997) Glossary of commercial explosives industry terms. Safety publication, no. 12. Institute of Makers of Explosives, Washington.

  • Jenkins SS (1981) Adjusting blast design for best results. A.A. Balkema, Pit and Quarry, Rotterdam

    Google Scholar 

  • Jong YH, Lee CI (2004) Influence of geological conditions on the powder factor for tunnel blasting. Int J Rock Mech Min Sci 41:533–538

    Article  Google Scholar 

  • Kahraman S, Altun H, Tezekici BS, Fener M (2006) Sawability prediction of carbonate rocks from shear strength parameters using artificial neural networks. Int J Rock Mech Min Sci 43:157–164

    Article  Google Scholar 

  • Khandelwal M, Singh TN (2006) Evaluation of blast-induced ground vibration predictors. Soil Dyn Earthquake Eng 27:116–125

    Article  Google Scholar 

  • Kinato H (1990) Empirical studies on the speed of Convergence of Neural Network Training using Genetic Algorithms. In 8th national conference on artificial intelligence, vol II. AAAI, MIT Press, pp 798–795

  • Koike K, Matsuda S (2003) Characterizing content distributions of impurities in a limestone mine using a feed forward neural network. Nat Resour Res 12(3):209–222

    Article  Google Scholar 

  • Konya CJ et al (2003) Rock blasting and overbreak control. National Highway Institute, FHWA-HI-92-001, USA

    Google Scholar 

  • Konya CJ, Walter EJ (1991) Rock blasting and overbreak control. FHWA Report- FHWA-HI-92-001

  • Kopp JW (1994) Observation of flyrock at several mines and quarries. Proceeding of 20th conference on explosives and blasting technique, Austin, Texas, pp 75–81

  • Ladegaard-Pedersen A, Persson A (1973) Flyrock in blasting II, experimental investigation. Swedish Detonic Research Foundation, Stockholm: Report DS 13

  • Langefors U, Kishlstrom B (1963) The modern technique of rock blasting. Wiley, New York

    Google Scholar 

  • Lopez JC, Lopez JE (1995) Drilling and blasting of rocks. A.A. Balkema, Rotterdam

    Google Scholar 

  • Lundborg N (1974) The hazards of flyrock in rock blasting. Swedish Detonic Research Foundation, Stockholm: Reports DS 12

  • Lundborg N (1981) Risk for flyrock when blasting. Swedish Council for Building Research, Stockholm: BFR Report R 29

  • Marshall SJ, Harrison RF (1991) Optimization and training of feed forward neural networks by GAs. Proceeding of IEE 2nd International Conference on Artificial Neural Networks, pp 39–43

  • Meulenkamp F, Alveraz G (1999) Application of neural networks for the prediction of the unconfined compressive strength (UCS) from Equotip hardness. Int J Rock Mech Min Sci 36:29–39

    Article  Google Scholar 

  • Michalewicz Z (1996) Genetic algorithms + Data structures = Evolution programs. Springer, Heidelberg

    Google Scholar 

  • Miller G, Todd P, Hedge S (1989) Designing neural networks using genetic algorithms. Proceeding of the 3rd International Joint Conference on Genetic Algorithms, pp 379–384

  • Monjezi M, Dehghani H (2008) Evaluation of effect of blasting pattern parameters on backbreak using neural networks. Int J Rock Mech Min Sci 45:1446–1453

    Article  Google Scholar 

  • Monjezi M, Dehghani H, Samimi Namin F (2007) Application of TOPSIS method in controlling flyrock in blasting operations. Proceedings of the 7th international science conference SGEM, Sofia, Bulgaria, pp 41–49

  • Monjezi M, Rezaei M, Yazdian A (2010) Prediction of backbreak in open-pit blasting using fuzzy set theory. Expert Syst Appl 37:2637–2643

    Article  Google Scholar 

  • Montana D, Davis C (1989) Training feed forward neural networks using genetic algorithms. Technical Report, BBN Systems and Technologies Inc, Cambridge

  • Neaupane KM, Adhikari NR (2006) Prediction of tunneling-induced ground movement with the multi-layer perceptron. International Journal of Tunneling and Underground Space Technology 21:151–159

    Article  Google Scholar 

  • Nie X, Zhang Q (1994) Prediction of rock mechanical behavior by artificial neural network: a comparison with traditional method. IV CSMR, Integral Approach to Applied Rock Mechanics. Santiago, Chile

  • Rehak TR, Bajpayee TS, Mowrey GL, Ingram DK (2001) Flyrock issues in blasting. Proceedings of the 27th Annual Conference on Explosives and Blasting Technique, vol. I. International Society of Explosives Engineers, Cleveland, pp 165–175

  • Roth J (1979) A model for the determination of flyrock range as a function of shot conditions. US Bureau of Mines contract J0387242, Management Science Associates, Los Altos

  • Rustan PA (1993) Minimum distance between charged boreholes for safe detonation. In: Rossamanith (ed) Rock fragmentation by blasting, FRAGBLAST-4

  • Sarma KS (1994) Models for assessing the blasting performance of explosives. Ph.D. thesis. University of Queensland, Brisbane.

  • Schiffmann WH, Joost M, Werner R (1993) Application of genetic algorithms to the construction of topologies for multilayer perceptrons. Proceeding of the international joint conference on neural networks and genetic algorithms, Innsbruk, pp 675–682

  • Scoble MJ, Lizotte YC, Paventi M, Mohanty BB (1997) Measurement of blast damage. Min Eng 49:103–108

    Google Scholar 

  • Shea CW, Clark D (1998) Avoiding tragedy: lessons to be learned from a flyrock fatality. Coal Age 2:51–54

    Google Scholar 

  • Singh TN, Singh V (2005) An intelligent approach to prediction and control ground vibration in mines. Geotech Geol Eng 23:249–262

    Article  Google Scholar 

  • Sivanandam SN, Deepa SN (2008) Introduction to genetic algorithms. Springer, Heidelberg

    Google Scholar 

  • Tawadrous AS (2006) Evaluation of artificial neural networks as a reliable tool in blast design. Proceedings of the 32nd annual conference on explosives and blasting techniques. International Society of Explosives Engineers, Dallas

    Google Scholar 

  • Tawadrous AS, Katsabanis PD (2006) Prediction of surface crown pillar stability using artificial neural networks. Int J Numer Anal Methods Geomech 31:917–31

    Article  Google Scholar 

  • Van Rooij AJF, Jain LC, Johnson RP (1996) Neural network training using genetic algorithms. World Scientific Publishing Co. Pvt, Ltd, Singapore

    Google Scholar 

  • Vonk E, Jain LC, Johnson RP (1997) Automatic generation of neural network architecture using evolutionary computation. World Scientific Publishing Co. Pvt. Ltd, Singapore

    Book  Google Scholar 

  • Whitely D, Bogart C (1990) Genetic algorithms and neural networks: optimizing connections and connectivity. Parallel Comput 14:347–361

    Article  Google Scholar 

  • White DW (1993) GANNet: a genetic algorithm for searching topology and weight spaces in neural network design. Dissertation at the University of Maryland

  • Whitely D, Hanson T (1989) Optimizing neural networks using faster, more accurate genetic search. Proceeding of the 3rd international conference on Genetic Algorithms, San Mateo, pp 391–396

  • Workman JL, Calder PN (1994) Flyrock prediction and control in surface mine blasting. Proceeding of the 20th conference on Explosives and Blasting Technique, Austin, Texas, pp 59–74

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Monjezi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monjezi, M., Amini Khoshalan, H. & Yazdian Varjani, A. Prediction of flyrock and backbreak in open pit blasting operation: a neuro-genetic approach. Arab J Geosci 5, 441–448 (2012). https://doi.org/10.1007/s12517-010-0185-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-010-0185-3

Keywords

Navigation