Skip to main content
Log in

A picture fuzzy similarity measure based on direct operations and novel multi-attribute decision-making method

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Picture fuzzy set (PFS) is a direct generalization of the fuzzy sets (FSs) and intuitionistic fuzzy sets (IFSs) and is quite powerful in modelling the situations that involve more answers of the type yes, no, abstain, and refuse. In this study, we introduce a novel picture fuzzy (PF) similarity measure on the basis of direct operation on the function of membership, the function of non-membership, the function of neutrality, the function of refusal, and the upper bound of the function of membership of two PFSs instead on the basis of distance measure or the association between the functions of membership, non-membership, and neutrality. The comparison of the proposed PF similarity measure with the existing PF similarity measures reveals that it does not give unreasonable results and also overcomes the drawbacks of the existing PF similarity measures. The application of the proposed measure in pattern recognition is also discussed. Moreover, we also introduce a new multi-attribute decision-making (MADM) method using the proposed PF similarity measure that overcomes a major drawback of the technique for order preference by similarity to ideal solution (TOPSIS). Finally, we contrast the performance of the proposed MADM method with several existing MADM methods in the PF environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

FS:

Fuzzy set

FSs:

Fuzzy sets

IF:

Intuitionistic fuzzy

IFS:

Intuitionistic fuzzy set

IFSs:

Intuitionistic fuzzy sets

IFV:

Intuitionistic fuzzy value

PF:

Picture fuzzy

PFS:

Picture fuzzy set

PFSs:

Picture fuzzy sets

IVPFSs:

Interval-valued picture fuzzy sets

PFV:

Picture fuzzy value

MADM:

Multi-attribute decision-making

MCDM:

Multi-criteria decision-making

MAGDM:

Multi-attribute group decision-making

TOPSIS:

Technique for order preference by similarity to the ideal solution

TODIM:

Portuguese acronym for Interactive Multi-Criteria Decision Making

VIKOR:

VIseKriterijumska Optimizacija I Kompromisno Resenje

EDAS:

Evaluation based on distance from the average solution

PFSS:

Picture fuzzy soft set

PFNP:

Picture fuzzy normalized projection

MULTIMOORA:

Multi-objective optimization by ratio analysis plus the full multiplicative form

PFNP-VIKOR:

Picture fuzzy normalized projection-based VIse Kriterijumska Optimizacija I Kompromisno Resenje

PIS:

Positive ideal solution

NIS:

Negative ideal solution

PFPIS:

Picture fuzzy positive ideal solution

PFNIS:

Picture fuzzy negative ideal solution

PFIR:

Picture fuzzy inferior ratio

WPFPCOG:

Weighted picture fuzzy power Choquet ordered geometric

WPFPSCOG:

Weighted picture fuzzy power Shapley Choquet ordered geometric

\(U\) :

Universal set

\({\text{PFS}}\left( U \right)\) :

Set of all picture fuzzy sets on \(U\)

References

  1. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  Google Scholar 

  2. Bajaj PK, Hooda DS (2010) Generalized measures of fuzzy directed-divergence, total ambiguity and information improvement. J Appl Math Stat Inform 6(2):31–44

    Google Scholar 

  3. Bhatia PK, Singh S (2013) On some divergence measures between fuzzy sets and aggregation operations. Adv Model Optim 15:235–248

    MATH  Google Scholar 

  4. Janis V, Tepavcevic A (2004) Distance generated by a fuzzy compatibility. Indian J Pure Appl Math 35:737–746

    MathSciNet  MATH  Google Scholar 

  5. Montes S, Couso I, Gil P, Bertoluzza C (2002) Divergence measure between fuzzy sets. Int J Approx Reason 30:91–105

    Article  MathSciNet  MATH  Google Scholar 

  6. Sharma S, Singh S (2019) On some generalized correlation coefficients of the fuzzy sets and fuzzy soft sets with application in cleanliness ranking of public health centres. J Intell Fuzzy Syst 36:3671–3683

    Article  Google Scholar 

  7. Singh S, Lalotra S, Sharma S (2019) Dual concepts in fuzzy theory: entropy and knowledge measure. Int J Intell Syst 34:1034–1059

    Article  Google Scholar 

  8. Singh S, Sharma S (2019) On generalized fuzzy entropy and fuzzy divergence measure with applications. Int J Fuzzy Syst Appl 8:47–69

    Google Scholar 

  9. Xucheng L (1992) Entropy, distance measure and similarity measure of fuzzy sets and their relations. Fuzzy Sets Syst 52:305–318

    Article  MathSciNet  Google Scholar 

  10. Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–96

    Article  MATH  Google Scholar 

  11. Das S, Dutta B, Guha D (2016) Weight computation of criteria in a decision-making problem by knowledge measure with intuitionistic fuzzy set and interval-valued intuitionistic fuzzy set. Soft Comput 20:3421–3442

    Article  MATH  Google Scholar 

  12. Hung WL, Yang MS (2007) Similarity measures of intuitionistic fuzzy sets based on L p-metric. Int J Approx Reason 6:120–136

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu HW (2005) New similarity measures between intuitionistic fuzzy sets and between elements. Math Comput Model 2:61–70

    Article  MathSciNet  MATH  Google Scholar 

  14. Mishra AR, Jain D, Hooda DS (2016) On fuzzy distance and induced fuzzy information measures. J Inf Optim Sci 37:193–211

    MathSciNet  Google Scholar 

  15. Montes I, Pal NR, Janiš V, Montes S (2014) Divergence measures for intuitionistic fuzzy sets. IEEE Trans Fuzzy Syst 23:444–456

    Article  Google Scholar 

  16. Peng X, Yuan H, Yang Y (2017) Pythagorean fuzzy information measures and their applications. Int J Intell Syst 32:991–1029

    Article  Google Scholar 

  17. Rajarajeswari P, Uma N (2013) Intuitionistic fuzzy multi-similarity measure based on cotangent function. Int J Eng Res Technol 2:1323–1329

    Google Scholar 

  18. Singh S, Ganie AH (2020) On some correlation coefficients in Pythagorean fuzzy environment with applications. Int J Intell Syst 35(4):682–717

    Article  Google Scholar 

  19. Singh S, Lalotra S, Ganie AH (2020) On some knowledge measures of intuitionistic fuzzy sets of type-two with application to MCDM. Cybern Inf Technol 20:1–21

    Google Scholar 

  20. Ye J (2012) Multicriteria group decision-making method using vector similarity measures for trapezoidal intuitionistic fuzzy numbers. Group Decis Negot 21:519–530

    Article  Google Scholar 

  21. Cuong BC, Kreinovich V (2013) Picture fuzzy sets: a new concept for computational intelligence problems. In: 2013 third world congress on information and communication technologies (WICT, 2013). IEEE pp 1–6

  22. Cuong BC (2014) Picture fuzzy sets. J Comput Sci Cybern 30(4):409–420

    Google Scholar 

  23. Singh P (2015) Correlation coefficients for picture fuzzy sets. J Intell Fuzzy Syst 28(2):591–604

    Article  MathSciNet  MATH  Google Scholar 

  24. Ganie AH, Singh S, Bhatia PK (2020) Some new correlation coefficients of picture fuzzy sets with applications. Neural Comput Appl. https://doi.org/10.1007/s00521-020-04715-y

    Article  Google Scholar 

  25. Wei G (2016) Picture fuzzy cross-entropy for multiple attribute decision making problems. J Bus Econ Manag 17:491–502

    Article  Google Scholar 

  26. Wei G (2018) TODIM method for picture fuzzy multiple attribute decision-making. Informatica 29:555–566

    Article  MathSciNet  Google Scholar 

  27. Wang C, Zhou X, Tu H, Tao S (2017) Some geometric aggregation operators based on picture fuzzy sets and their application in multiple attribute decision making. Ital J Pure Appl Math 37:477–492

    MathSciNet  MATH  Google Scholar 

  28. Wei G (2018) Picture fuzzy Hamacher aggregation operators and their application to multiple attribute decision making. FundamentaInformaticae 157:271–320

    MathSciNet  MATH  Google Scholar 

  29. Dutta P (2018) Medical diagnosis based on distance measures between picture fuzzy sets. Int J Fuzzy Syst Appl 7:15–36

    Google Scholar 

  30. Son LH (2017) Measuring analogousness in picture fuzzy sets: from picture distance measures to picture association measures. Fuzzy Optim Decis Mak 16:359–378

    Article  MathSciNet  MATH  Google Scholar 

  31. Singh P, Mishra NK, Kumar M, Saxena S, Singh V (2018) Risk analysis of flood disaster based on similarity measures in picture fuzzy environment. Afr Mat 29:1019–1038

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang S, Wei G, Gao H, Wei C, Wei Y (2019) EDAS method for multiple criteria group decision making with picture fuzzy information and its application to green suppliers’ selections. Technol Econ Dev Econ 25:1123–1138

    Article  Google Scholar 

  33. Wei G (2018) Some Cosine similarity measures for picture fuzzy sets and their applications to strategic decision making. Informatica 28:547–564

    Article  MATH  Google Scholar 

  34. Wei G (2018) Some similarity measures for picture fuzzy sets and their applications. Iran J Fuzzy Syst 15:77–89

    MathSciNet  MATH  Google Scholar 

  35. Thao NX (2019) Similarity measures of picture fuzzy sets based on entropy and their application in MCDM. Pattern Anal Appl 23(3):1203–1213

    Article  MathSciNet  Google Scholar 

  36. Khan MJ, Kumam P, Deebani W, Kumam W, Shah Z (2020) Bi-parametric distance and similarity measures of picture fuzzy sets and their applications in medical diagnosis. Egypt Inform J. https://doi.org/10.1016/j.eij.2020.08.002

    Article  Google Scholar 

  37. Wei G, Gao H (2018) The generalized dice similarity measures for picture fuzzy sets and their applications. Informatica 29:107–124

    Article  MathSciNet  MATH  Google Scholar 

  38. Dinh NV, Thao NX (2018) Some measures of picture fuzzy sets and their application in multi-attribute decision-making. Int J Math Sci Comput 3:23–41

    Google Scholar 

  39. Nhung LT, Dinh NV, Chau NM, Thao NX (2018) New dissimilarity measures on picture fuzzy sets and applications. J Comput Sci Cybern 34:219–231

    Article  Google Scholar 

  40. Liu H, Wang H, Yuan Y, Zhang C (2019) Models for multiple attribute decision making with picture fuzzy information. J Intell Fuzzy Syst 37:1973–1980

    Article  Google Scholar 

  41. Thao NX, Ali M, Nhung LT, GianeyHK SF (2019) A new multi- criteria decision-making algorithm for medical diagnosis and classification problems using divergence measure of picture fuzzy sets. J Intell Fuzzy Syst 37:7785–7796

    Article  Google Scholar 

  42. Jana C, Senapati T, Pal M, Yager RR (2019) Picture fuzzy Dombi aggregation operators: application to MADM process. Appl Soft Comput 74:99–109

    Article  Google Scholar 

  43. Wei G, Zhang S, Lu J, Wu J, Wei C (2019) An extended bidirectional projection method for picture fuzzy MAGDM and its application to safety assessment of construction project. IEEE Access 7:166138–166147

    Article  Google Scholar 

  44. Ashraf S, Mahmood T, Abdullah S, Khan Q (2019) Different approaches to multi-criteria group decision-making problems for picture fuzzy environment. Bull Braz Math Soc New Ser 50:373–397

    Article  MathSciNet  MATH  Google Scholar 

  45. Son LH (2016) Generalized picture distance measure and applications to picture fuzzy clustering. Appl Soft Comput 46:284–295

    Article  Google Scholar 

  46. Wang LH, Zhang HY, Wang JQ, Li L (2018) Picture fuzzy normalized projection-based VIKOR method for the risk evaluation of construction project. Appl Soft Comput 64:216–226

    Article  Google Scholar 

  47. Lin M, Huang C, Xu Z (2020) MULTIMOORA based MCDM model for site selection of car sharing station under picture fuzzy environment. Sustain Cities Soc 53:101873. https://doi.org/10.1016/j.scs.2019.101873

    Article  Google Scholar 

  48. Tian C, Peng J, Zhang S, Zhang W, Wang J (2019) Weighted picture fuzzy aggregation operators and their applications to multi-criteria decision-making problems. Comput Ind Eng 137:106037. https://doi.org/10.1016/j.cie.2019.106037

    Article  Google Scholar 

  49. Joshi R (2020) A novel decision-making method using R-Norm concept and VIKOR approach under picture fuzzy environment. Expert Syst Appl 147:113228

    Article  Google Scholar 

  50. Joshi R (2020) A new picture fuzzy information measure based on Tsallis–Havrda– Charvat concept with applications in presaging poll outcome. Comput Appl Math 39:1–24

    Article  MathSciNet  MATH  Google Scholar 

  51. Hong DH, Kim C (1999) A note on similarity measures between vague sets and between elements. Inf Sci 115:83–96

    Article  MathSciNet  MATH  Google Scholar 

  52. Hwang CL, Yoon KP (1981) Multiple attribute decision making: methods and applications. Springer, New York

    Book  MATH  Google Scholar 

  53. Chen CT (2000) Extensions of the TOPSIS for group decision making under fuzzy environment. Fuzzy Sets Syst 114:1–9

    Article  MATH  Google Scholar 

  54. Wei G, Alsaadi FE, Hayat T, Alsaedi A (2016) Projection models for multiple attribute decision making with picture fuzzy information. Int J Mach Learn Cybern. https://doi.org/10.1007/s13042-016-0604-1

    Article  Google Scholar 

  55. Singh S, Ganie AH (2020) Applications of picture fuzzy similarity measures in pattern recognition, clustering, and MADM. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2020.114264

    Article  Google Scholar 

Download references

Acknowledgements

Authors are highly thankful to the anonymous reviewers for their constructive suggestions and bringing the paper in the present form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surender Singh.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Ethical approval

The present article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: proof of Theorem 1

Appendix: proof of Theorem 1

Proof

To show that \(S_{GS} \left( {G, H} \right)\) is a PF similarity measure, we show that it satisfies the four properties given in Definition 5.

(1) For each \(q, r \in \left[ {0, + \infty } \right]\), we have \(\sqrt {qr} \le \frac{q + r}{2}\). So, for \(0 \le m_{G} \left( {t_{k} } \right) \le 1\), \(0 \le n_{G} \left( {t_{k} } \right) \le 1\), \(0 \le h_{G} \left( {t_{k} } \right) \le 1,\) \(0 \le e_{G} \left( {t_{k} } \right) \le 1\), \(0 \le 1 - m_{G} \left( {t_{k} } \right) - n_{G} \left( {t_{k} } \right) \le 1\), \(0 \le 1 - m_{G} \left( {t_{k} } \right) - h_{G} \left( {t_{k} } \right) \le 1\) and \(0 \le 1 - n_{G} \left( {t_{k} } \right) - h_{G} \left( {t_{k} } \right) \le 1\) we get

$$\begin{aligned} 0 & \le 3\sqrt {m_{G} \left( {t_{k} } \right)m_{H} \left( {t_{k} } \right)} + 3\sqrt {n_{G} \left( {t_{k} } \right)n_{H} \left( {t_{k} } \right)} + 3\sqrt {h_{G} \left( {t_{k} } \right)h_{H} \left( {t_{k} } \right)} \\ & \quad + \sqrt {e_{G} \left( {t_{k} } \right)e_{H} \left( {t_{k} } \right)} + \sqrt {\left( {1 - m_{G} \left( {t_{k} } \right) - n_{G} \left( {t_{k} } \right)} \right)\left( {1 - m_{H} \left( {t_{k} } \right) - n_{H} \left( {t_{k} } \right)} \right)} \\ & \quad + \sqrt {\left( {1 - m_{G} \left( {t_{k} } \right) - h_{G} \left( {t_{k} } \right)} \right)\left( {1 - m_{H} \left( {t_{k} } \right) - h_{H} \left( {t_{k} } \right)} \right)} \\ & \quad + \sqrt {\left( {1 - n_{G} \left( {t_{k} } \right) - h_{G} \left( {t_{k} } \right)} \right)\left( {1 - n_{H} \left( {t_{k} } \right) - h_{H} \left( {t_{k} } \right)} \right)} \\ & \le \frac{3}{2}\left( {m_{G} \left( {t_{k} } \right) + m_{H} \left( {t_{k} } \right)} \right) + \frac{3}{2}\left( {n_{G} \left( {t_{k} } \right) + n_{H} \left( {t_{k} } \right)} \right) \\ & \quad + \frac{3}{2}\left( {h_{G} \left( {t_{k} } \right) + h_{H} \left( {t_{k} } \right)} \right) + \frac{{e_{G} \left( {t_{k} } \right) + e_{H} \left( {t_{k} } \right)}}{2} + \frac{{\left( {1 - m_{G} \left( {t_{k} } \right) - n_{G} \left( {t_{k} } \right)} \right) + \left( {1 - m_{H} \left( {t_{k} } \right) - n_{H} \left( {t_{k} } \right)} \right)}}{2} \\ & \quad + \frac{{\left( {1 - m_{G} \left( {t_{k} } \right) - h_{G} \left( {t_{k} } \right)} \right) + \left( {1 - m_{H} \left( {t_{k} } \right) - h_{H} \left( {t_{k} } \right)} \right)}}{2} \\ & \quad + \frac{{\left( {1 - n_{G} \left( {t_{k} } \right) - h_{G} \left( {t_{k} } \right)} \right) + \left( {1 - n_{H} \left( {t_{k} } \right) - h_{H} \left( {t_{k} } \right)} \right)}}{2} \\ & = 3 + \frac{{m_{G} \left( {t_{k} } \right) + n_{G} \left( {t_{k} } \right) + h_{G} \left( {t_{k} } \right) + e_{G} \left( {t_{k} } \right)}}{2} + \frac{{m_{H} \left( {t_{k} } \right) + n_{H} \left( {t_{k} } \right) + h_{H} \left( {t_{k} } \right) + e_{H} \left( {t_{k} } \right)}}{2} \\ & = 3 + \frac{1}{2} + \frac{1}{2} = 4. \\ \end{aligned}$$

So,

$$0 \le \frac{1}{4l}\mathop \sum_{k = 1}^{l} \left[ {\begin{array}{*{20}c} {3\sqrt {m_{G} \left( {t_{k} } \right)m_{H} \left( {t_{k} } \right)} + 3\sqrt {n_{G} \left( {t_{k} } \right)n_{H} \left( {t_{k} } \right)} } \\ { + 3\sqrt {h_{G} \left( {t_{k} } \right)h_{H} \left( {t_{k} } \right)} + \sqrt {e_{G} \left( {t_{k} } \right)e_{H} \left( {t_{k} } \right)} } \\ { + \sqrt {\begin{array}{*{20}c} {\left( {1 - m_{G} \left( {t_{k} } \right) - n_{G} \left( {t_{k} } \right)} \right)} \\ { \times \left( {1 - m_{H} \left( {t_{k} } \right) - n_{H} \left( {t_{k} } \right)} \right)} \\ \end{array} } } \\ { + \sqrt {\begin{array}{*{20}c} {\left( {1 - m_{G} \left( {t_{k} } \right) - h_{G} \left( {t_{k} } \right)} \right)} \\ { \times \left( {1 - m_{H} \left( {t_{k} } \right) - h_{H} \left( {t_{k} } \right)} \right)} \\ \end{array} } } \\ { + \sqrt {\begin{array}{*{20}c} {\left( {1 - n_{G} \left( {t_{k} } \right) - h_{G} \left( {t_{k} } \right)} \right)} \\ { \times \left( {1 - n_{H} \left( {t_{k} } \right) - h_{H} \left( {t_{k} } \right)} \right)} \\ \end{array} } } \\ \end{array} } \right] \le 1$$

Therefore, we have \(0 \le S_{GS} \left( {G, H} \right) \le 1\).

(2) \(S_{GS} \left( {G, H} \right) = S_{GS} \left( {H, G} \right)\) is obvious due to the cumutativeness of the expression of \(S_{GS} \left( {G, H} \right)\).

(3) Since \(\sqrt {qr}\) achieves its maximum value \(\frac{q + r}{2}\) when \(q = r\). So, we have

$$\begin{aligned} & S_{GS} \left( {G, H} \right) = 1 \\ & \quad \Leftrightarrow \left[ {\begin{array}{*{20}c} {3\sqrt {m_{G} \left( {t_{k} } \right)m_{H} \left( {t_{k} } \right)} + 3\sqrt {n_{G} \left( {t_{k} } \right)n_{H} \left( {t_{k} } \right)} } \\ { + 3\sqrt {h_{G} \left( {t_{k} } \right)h_{H} \left( {t_{k} } \right)} + \sqrt {e_{G} \left( {t_{k} } \right)e_{H} \left( {t_{k} } \right)} } \\ { + \sqrt {\begin{array}{*{20}c} {\left( {1 - m_{G} \left( {t_{k} } \right) - n_{G} \left( {t_{k} } \right)} \right)} \\ { \times \left( {1 - m_{H} \left( {t_{k} } \right) - n_{H} \left( {t_{k} } \right)} \right)} \\ \end{array} } } \\ { + \sqrt {\begin{array}{*{20}c} {\left( {1 - m_{G} \left( {t_{k} } \right) - h_{G} \left( {t_{k} } \right)} \right)} \\ { \times \left( {1 - m_{H} \left( {t_{k} } \right) - h_{H} \left( {t_{k} } \right)} \right)} \\ \end{array} } } \\ { + \sqrt {\begin{array}{*{20}c} {\left( {1 - n_{G} \left( {t_{k} } \right) - h_{G} \left( {t_{k} } \right)} \right)} \\ { \times \left( {1 - n_{H} \left( {t_{k} } \right) - h_{H} \left( {t_{k} } \right)} \right)} \\ \end{array} } } \\ \end{array} } \right] = 4 \\ & \quad \Leftrightarrow m_{G} \left( {t_{k} } \right) = m_{H} \left( {t_{k} } \right), n_{G} \left( {t_{k} } \right) = n_{H} \left( {t_{k} } \right), h_{G} \left( {t_{k} } \right) \\ & \quad = h_{H} \left( {t_{k} } \right), e_{G} \left( {t_{k} } \right) = e_{H} \left( {t_{k} } \right),\left( {1 - m_{G} \left( {t_{k} } \right) - n_{G} \left( {t_{k} } \right)} \right) \\ & \quad = \left( {1 - m_{H} \left( {t_{k} } \right) - n_{H} \left( {t_{k} } \right)} \right),\left( {1 - m_{G} \left( {t_{k} } \right) - h_{G} \left( {t_{k} } \right)} \right) \\ & \quad = \left( {1 - m_{H} \left( {t_{k} } \right) - h_{H} \left( {t_{k} } \right)} \right),\left( {1 - n_{G} \left( {t_{k} } \right) - h_{G} \left( {t_{k} } \right)} \right) \\ & \quad = \left( {1 - n_{H} \left( {t_{k} } \right) - h_{H} \left( {t_{k} } \right)} \right) \Leftrightarrow G = H. \\ \end{aligned}$$

So, \(S_{GS} \left( {G, H} \right) = 1\) if and only if \(G = H\).

(4) Let \(I \in PFS\left( U \right)\) be another PFS such that \(G \subseteq H \subseteq I\). Then we have, \(m_{G} \left( {t_{k} } \right) \le m_{H} \left( {t_{k} } \right) \le m_{I} \left( {t_{k} } \right)\), \(n_{I} \left( {t_{k} } \right) \le n_{H} \left( {t_{k} } \right) \le n_{G} \left( {t_{k} } \right)\) and \(h_{G} \left( {t_{k} } \right) \le h_{H} \left( {t_{k} } \right) \le h_{I} \left( {t_{k} } \right)\).

For \(a, b, c \in \left[ {0, 1} \right], a + b + c \le 1\), we define a function \(f\) as:

$$\begin{aligned} & f\left( {q, r, s} \right) = 3\sqrt {aq} + 3\sqrt {br} + 3\sqrt {cs} \\ & \quad + \sqrt {\left( {1 - a - b - c} \right)\left( {1 - q - r - s} \right)} \\ & \quad + \sqrt {\left( {1 - a - b} \right)\left( {1 - q - r} \right)} \\ & \quad + \sqrt {\left( {1 - a - c} \right)\left( {1 - q - s} \right)} + \sqrt {\left( {1 - b - c} \right)\left( {1 - r - s} \right)} \\ \end{aligned}$$

where \(q, r, s \in \left[ {0, 1} \right], q + r + s \in \left[ {0, 1} \right]\).

Now,

$$\begin{aligned} \frac{\partial f}{{\partial q}} & = \frac{3\sqrt a }{{2\sqrt q }} - \frac{{\sqrt {1 - a - b - c} }}{{2\sqrt {1 - q - r - s} }} - \frac{{\sqrt {1 - a - b} }}{{2\sqrt {1 - q - r} }} - \frac{{\sqrt {1 - a - c} }}{{2\sqrt {1 - q - s} }} \\ & = \left( {\frac{\sqrt a }{{2\sqrt q }} + \frac{\sqrt a }{{2\sqrt q }} + \frac{\sqrt a }{{2\sqrt q }}} \right) - \frac{{\sqrt {1 - a - b - c} }}{{2\sqrt {1 - q - r - s} }} \\ & \quad - \frac{{\sqrt {1 - a - b} }}{{2\sqrt {1 - q - r} }} - \frac{{\sqrt {1 - a - c} }}{{2\sqrt {1 - q - s} }} \\ & = \left( {\frac{\sqrt a }{{2\sqrt q }} - \frac{{\sqrt {1 - a - b - c} }}{{2\sqrt {1 - q - r - s} }}} \right) + \left( {\frac{\sqrt a }{{2\sqrt q }} - \frac{{\sqrt {1 - a - b} }}{{2\sqrt {1 - q - r} }}} \right) \\ & \quad + \left( {\frac{\sqrt a }{{2\sqrt q }} - \frac{{\sqrt {1 - a - c} }}{{2\sqrt {1 - q - s} }}} \right) \\ & = \frac{1}{2}\left( {\frac{{\sqrt {a\left( {1 - q - r - s} \right)} - \sqrt {q\left( {1 - a - b - c} \right)} }}{{\sqrt {q\left( {1 - q - r - s} \right)} }}} \right) \\ & \quad + \frac{1}{2}\left( {\frac{{\sqrt {a\left( {1 - q - r} \right)} - \sqrt {q\left( {1 - a - b} \right)} }}{{\sqrt {q\left( {1 - q - r} \right)} }}} \right) \\ & \quad + \frac{1}{2}\left( {\frac{{\sqrt {a\left( {1 - q - s} \right)} - \sqrt {q\left( {1 - a - c} \right)} }}{{\sqrt {q\left( {1 - q - s} \right)} }}} \right) \\ & = \frac{1}{2}\left( {\frac{{a\left( {1 - q - r - s} \right) - q\left( {1 - a - b - c} \right)}}{{\sqrt {q\left( {1 - q - r - s} \right)} \left( {\sqrt {a\left( {1 - q - r - s} \right)} + \sqrt {q\left( {1 - a - b - c} \right)} } \right)}}} \right) \\ & \quad + \frac{1}{2}\left( {\frac{{a\left( {1 - q - r} \right) - q\left( {1 - a - b} \right)}}{{\sqrt {q\left( {1 - q - r} \right)} \left( {\sqrt {a\left( {1 - q - r} \right)} + \sqrt {q\left( {1 - a - b} \right)} } \right)}}} \right) \\ & \quad + \frac{1}{2}\left( {\frac{{a\left( {1 - q - s} \right) - q\left( {1 - a - c} \right)}}{{\sqrt {q\left( {1 - q - s} \right)} \left( {\sqrt {a\left( {1 - q - s} \right)} + \sqrt {q\left( {1 - a - c} \right)} } \right)}}} \right) \\ & = \frac{1}{2}\left( {\frac{{a\left( {1 - r - s} \right) - q\left( {1 - b - c} \right)}}{{\sqrt {q\left( {1 - q - r - s} \right)} \left( {\sqrt {a\left( {1 - q - r - s} \right)} + \sqrt {q\left( {1 - a - b - c} \right)} } \right)}}} \right) \\ & \quad + \frac{1}{2}\left( {\frac{{a\left( {1 - r} \right) - q\left( {1 - b} \right)}}{{\sqrt {q\left( {1 - q - r} \right)} \left( {\sqrt {a\left( {1 - q - r} \right)} + \sqrt {q\left( {1 - a - b} \right)} } \right)}}} \right) \\ & \quad + \frac{1}{2}\left( {\frac{{a\left( {1 - s} \right) - q\left( {1 - c} \right)}}{{\sqrt {q\left( {1 - q - s} \right)} \left( {\sqrt {a\left( {1 - q - s} \right)} + \sqrt {q\left( {1 - a - c} \right)} } \right)}}} \right) \\ & = \frac{1}{2}\left( {\frac{{\left( {a - q} \right)\left( {1 - b - c} \right)}}{{\sqrt {q\left( {1 - q - r - s} \right)} \left( {\sqrt {a\left( {1 - q - r - s} \right)} + \sqrt {q\left( {1 - a - b - c} \right)} } \right)}}} \right) \\ & \quad + \frac{1}{2}\left( {\frac{{\left( {a - q} \right)\left( {1 - b} \right)}}{{\sqrt {q\left( {1 - q - r} \right)} \left( {\sqrt {a\left( {1 - q - r} \right)} + \sqrt {q\left( {1 - a - b} \right)} } \right)}}} \right) \\ & \quad + \frac{1}{2}\left( {\frac{{\left( {a - q} \right)\left( {1 - c} \right)}}{{\sqrt {q\left( {1 - q - s} \right)} \left( {\sqrt {a\left( {1 - q - s} \right)} + \sqrt {q\left( {1 - a - c} \right)} } \right)}}} \right)\;{\text{at}}\;r = b \\ & \quad {\text{and}}\;s = c. \\ \end{aligned}$$
$$\begin{aligned} & \Rightarrow \frac{\partial f}{{\partial q}} = \frac{1}{2}\left( {\frac{{\left( {a - q} \right)\left( {1 - b - c} \right)}}{{\sqrt {q\left( {1 - q - r - s} \right)} \left( {\sqrt {a\left( {1 - q - r - s} \right)} + \sqrt {q\left( {1 - a - b - c} \right)} } \right)}}} \right) \\ & \quad + \frac{1}{2}\left( {\frac{{\left( {a - q} \right)\left( {1 - b} \right)}}{{\sqrt {q\left( {1 - q - r} \right)} \left( {\sqrt {a\left( {1 - q - r} \right)} + \sqrt {q\left( {1 - a - b} \right)} } \right)}}} \right) \\ & \quad + \frac{1}{2}\left( {\frac{{\left( {a - q} \right)\left( {1 - c} \right)}}{{\sqrt {q\left( {1 - q - s} \right)} \left( {\sqrt {a\left( {1 - q - s} \right)} + \sqrt {q\left( {1 - a - c} \right)} } \right)}}} \right) \\ \end{aligned}$$

Similarly, we have

$$\begin{aligned} \frac{\partial f}{{\partial r}} & = \frac{1}{2}\left( {\frac{{\left( {b - r} \right)\left( {1 - a - c} \right)}}{{\sqrt {r\left( {1 - q - r - s} \right)} \left( {\sqrt {b\left( {1 - q - r - s} \right)} + \sqrt {r\left( {1 - a - b - c} \right)} } \right)}}} \right) \\ & \quad + \frac{1}{2}\left( {\frac{{\left( {b - r} \right)\left( {1 - a} \right)}}{{\sqrt {r\left( {1 - q - r} \right)} \left( {\sqrt {b\left( {1 - q - r} \right)} + \sqrt {r\left( {1 - a - b} \right)} } \right)}}} \right) \\ & \quad + \frac{1}{2}\left( {\frac{{\left( {b - r} \right)\left( {1 - c} \right)}}{{\sqrt {r\left( {1 - r - s} \right)} \left( {\sqrt {b\left( {1 - r - s} \right)} + \sqrt {r\left( {1 - b - c} \right)} } \right)}}} \right) \\ \frac{\partial f}{{\partial s}} & = \frac{1}{2}\left( {\frac{{\left( {c - s} \right)\left( {1 - a - b} \right)}}{{\sqrt {s\left( {1 - q - r - s} \right)} \left( {\sqrt {c\left( {1 - q - r - s} \right)} + \sqrt {s\left( {1 - a - b - c} \right)} } \right)}}} \right) \\ & \quad + \frac{1}{2}\left( {\frac{{\left( {c - s} \right)\left( {1 - a} \right)}}{{\sqrt {s\left( {1 - q - s} \right)} \left( {\sqrt {c\left( {1 - q - s} \right)} + \sqrt {s\left( {1 - a - c} \right)} } \right)}}} \right) \\ & \quad + \frac{1}{2}\left( {\frac{{\left( {c - s} \right)\left( {1 - b} \right)}}{{\sqrt {s\left( {1 - r - s} \right)} \left( {\sqrt {c\left( {1 - r - s} \right)} + \sqrt {s\left( {1 - b - c} \right)} } \right)}}} \right). \\ \end{aligned}$$

For \(a \le q \le 1, b \le 1, c \le 1\), we have \(\frac{\partial f}{{\partial q}} \le 0\), so \(f\) is a decreasing function of \(q\) for \(q \ge a\). For \(0 \le q \le a, b \le 1, c \le 1\), we have \(\frac{\partial f}{{\partial q}} \ge 0\), so \(f\) is an increasing function of \(q\) for \(q \le a\). Similarly, for \(b \le r \le 1, a \le 1, c \le 1\), we have \(\frac{\partial f}{{\partial r}} \le 0\) and for \(0 \le r \le b, a \le 1, c \le 1\), we have \(\frac{\partial f}{{\partial r}} \ge 0\). This means that \(f\) is a decreasing function of \(r\) when \(r \ge b\) and an increasing function of \(r\) when \(r \le b\). Also, for \(c \le s \le 1, a \le 1, b \le 1\), we have \(\frac{\partial f}{{\partial s}} \le 0\) and for \(0 \le s \le c, a \le 1, b \le 1\), we have \(\frac{\partial f}{{\partial s}} \ge 0\). This means that \(f\) is a decreasing function of \(s\) when \(s \ge c\) and an increasing function of \(s\) when \(s \le c\).

Now, for \(a = m_{G} \left( {t_{k} } \right), b = n_{G} \left( {t_{k} } \right), c = h_{G} \left( {t_{k} } \right)\) and two triplets \(\left( {m_{H} \left( {t_{k} } \right), n_{H} \left( {t_{k} } \right), h_{H} \left( {t_{k} } \right)} \right)\), \(\left( {m_{I} \left( {t_{k} } \right), n_{I} \left( {t_{k} } \right), h_{I} \left( {t_{k} } \right)} \right)\) satisfying \(a = m_{G} \left( {t_{k} } \right) \le m_{H} \left( {t_{k} } \right) \le m_{I} \left( {t_{k} } \right), n_{I} \left( {t_{k} } \right) \le n_{H} \left( {t_{k} } \right) \le n_{G} \left( {t_{k} } \right) = b\) and \(c = h_{G} \left( {t_{k} } \right) \le h_{H} \left( {t_{k} } \right) \le h_{I} \left( {t_{k} } \right)\), we have

$$\begin{aligned} & f\left( {m_{I} \left( {t_{k} } \right), n_{I} \left( {t_{k} } \right), h_{I} \left( {t_{k} } \right)} \right) \le f\left( {m_{H} \left( {t_{k} } \right), n_{I} \left( {t_{k} } \right), h_{I} \left( {t_{k} } \right)} \right) \\ & \quad \le f\left( {m_{H} \left( {t_{k} } \right), n_{H} \left( {t_{k} } \right), h_{I} \left( {t_{k} } \right)} \right) \\ \end{aligned}$$

and

$$\begin{aligned} & f\left( {m_{I} \left( {t_{k} } \right), n_{I} \left( {t_{k} } \right), h_{I} \left( {t_{k} } \right)} \right) \le f\left( {m_{I} \left( {t_{k} } \right), n_{I} \left( {t_{k} } \right), h_{H} \left( {t_{k} } \right)} \right) \\ & \quad \le f\left( {m_{I} \left( {t_{k} } \right), n_{H} \left( {t_{k} } \right), h_{H} \left( {t_{k} } \right)} \right). \\ \end{aligned}$$

So,

$$\begin{aligned} & \left[ {\begin{array}{*{20}c} {3\sqrt {m_{G} \left( {t_{k} } \right)m_{I} \left( {t_{k} } \right)} + 3\sqrt {n_{G} \left( {t_{k} } \right)n_{I} \left( {t_{k} } \right)} } \\ { + 3\sqrt {h_{G} \left( {t_{k} } \right)h_{I} \left( {t_{k} } \right)} + \sqrt {e_{G} \left( {t_{k} } \right)e_{I} \left( {t_{k} } \right)} } \\ { + \sqrt {\begin{array}{*{20}c} {\left( {1 - m_{G} \left( {t_{k} } \right) - n_{G} \left( {t_{k} } \right)} \right)} \\ { \times \left( {1 - m_{I} \left( {t_{k} } \right) - n_{I} \left( {t_{k} } \right)} \right)} \\ \end{array} } } \\ { + \sqrt {\begin{array}{*{20}c} {\left( {1 - m_{G} \left( {t_{k} } \right) - h_{G} \left( {t_{k} } \right)} \right)} \\ { \times \left( {1 - m_{I} \left( {t_{k} } \right) - h_{I} \left( {t_{k} } \right)} \right)} \\ \end{array} } } \\ { + \sqrt {\begin{array}{*{20}c} {\left( {1 - n_{G} \left( {t_{k} } \right) - h_{G} \left( {t_{k} } \right)} \right)} \\ { \times \left( {1 - n_{I} \left( {t_{k} } \right) - h_{I} \left( {t_{k} } \right)} \right)} \\ \end{array} } } \\ \end{array} } \right] \\ & \quad \le \left[ {\begin{array}{*{20}c} {3\sqrt {m_{G} \left( {t_{k} } \right)m_{H} \left( {t_{k} } \right)} + 3\sqrt {n_{G} \left( {t_{k} } \right)n_{H} \left( {t_{k} } \right)} } \\ { + 3\sqrt {h_{G} \left( {t_{k} } \right)h_{H} \left( {t_{k} } \right)} + \sqrt {e_{G} \left( {t_{k} } \right)e_{H} \left( {t_{k} } \right)} } \\ { + \sqrt {\begin{array}{*{20}c} {\left( {1 - m_{G} \left( {t_{k} } \right) - n_{G} \left( {t_{k} } \right)} \right)} \\ { \times \left( {1 - m_{H} \left( {t_{k} } \right) - n_{H} \left( {t_{k} } \right)} \right)} \\ \end{array} } } \\ { + \sqrt {\begin{array}{*{20}c} {\left( {1 - m_{G} \left( {t_{k} } \right) - h_{G} \left( {t_{k} } \right)} \right)} \\ { \times \left( {1 - m_{H} \left( {t_{k} } \right) - h_{H} \left( {t_{k} } \right)} \right)} \\ \end{array} } } \\ { + \sqrt {\begin{array}{*{20}c} {\left( {1 - n_{G} \left( {t_{k} } \right) - h_{G} \left( {t_{k} } \right)} \right)} \\ { \times \left( {1 - n_{H} \left( {t_{k} } \right) - h_{H} \left( {t_{k} } \right)} \right)} \\ \end{array} } } \\ \end{array} } \right] \\ & \quad \Rightarrow S_{GS} \left( {G, H} \right) \ge S_{GS} \left( {G, I} \right). \\ \end{aligned}$$

Now, if we let \(a = m_{I} \left( {t_{k} } \right), b = n_{I} \left( {t_{k} } \right), c = h_{I} \left( {t_{k} } \right)\) and two triplets \(\left( {m_{G} \left( {t_{k} } \right), n_{G} \left( {t_{k} } \right), h_{G} \left( {t_{k} } \right)} \right)\), \(\left( {m_{H} \left( {t_{k} } \right), n_{H} \left( {t_{k} } \right), h_{H} \left( {t_{k} } \right)} \right)\) satisfying \(m_{G} \left( {t_{k} } \right) \le m_{H} \left( {t_{k} } \right) \le m_{I} \left( {t_{k} } \right) = a, b = n_{I} \left( {t_{k} } \right) \le n_{H} \left( {t_{k} } \right) \le n_{G} \left( {t_{k} } \right)\) and \(h_{G} \left( {t_{k} } \right) \le h_{H} \left( {t_{k} } \right) \le h_{I} \left( {t_{k} } \right) = c\), we have

$$\begin{aligned} & f\left( {m_{G} \left( {t_{k} } \right), n_{G} \left( {t_{k} } \right), h_{G} \left( {t_{k} } \right)} \right) \le f\left( {m_{H} \left( {t_{k} } \right), n_{G} \left( {t_{k} } \right), h_{G} \left( {t_{k} } \right)} \right) \\ & \quad \le f\left( {m_{H} \left( {t_{k} } \right), n_{H} \left( {t_{k} } \right), h_{G} \left( {t_{k} } \right)} \right) \\ \end{aligned}$$

and

$$\begin{aligned} & f\left( {m_{G} \left( {t_{k} } \right), n_{G} \left( {t_{k} } \right), h_{G} \left( {t_{k} } \right)} \right) \le f\left( {m_{G} \left( {t_{k} } \right), n_{G} \left( {t_{k} } \right), h_{H} \left( {t_{k} } \right)} \right) \\ & \quad \le f\left( {m_{G} \left( {t_{k} } \right), n_{H} \left( {t_{k} } \right), h_{H} \left( {t_{k} } \right)} \right). \\ \end{aligned}$$

So,

$$\begin{aligned} & \left[ {\begin{array}{*{20}c} {3\sqrt {m_{G} \left( {t_{k} } \right)m_{I} \left( {t_{k} } \right)} + 3\sqrt {n_{G} \left( {t_{k} } \right)n_{I} \left( {t_{k} } \right)} } \\ { + 3\sqrt {h_{G} \left( {t_{k} } \right)h_{I} \left( {t_{k} } \right)} + \sqrt {e_{G} \left( {t_{k} } \right)e_{I} \left( {t_{k} } \right)} } \\ { + \sqrt {\begin{array}{*{20}c} {\left( {1 - m_{G} \left( {t_{k} } \right) - n_{G} \left( {t_{k} } \right)} \right)} \\ { \times \left( {1 - m_{I} \left( {t_{k} } \right) - n_{I} \left( {t_{k} } \right)} \right)} \\ \end{array} } } \\ { + \sqrt {\begin{array}{*{20}c} {\left( {1 - m_{G} \left( {t_{k} } \right) - h_{G} \left( {t_{k} } \right)} \right)} \\ { \times \left( {1 - m_{I} \left( {t_{k} } \right) - h_{I} \left( {t_{k} } \right)} \right)} \\ \end{array} } } \\ { + \sqrt {\begin{array}{*{20}c} {\left( {1 - n_{G} \left( {t_{k} } \right) - h_{G} \left( {t_{k} } \right)} \right)} \\ { \times \left( {1 - n_{I} \left( {t_{k} } \right) - h_{I} \left( {t_{k} } \right)} \right)} \\ \end{array} } } \\ \end{array} } \right] \\ & \quad \le \left[ {\begin{array}{*{20}c} {3\sqrt {m_{H} \left( {t_{k} } \right)m_{I} \left( {t_{k} } \right)} + 3\sqrt {n_{H} \left( {t_{k} } \right)n_{I} \left( {t_{k} } \right)} } \\ { + 3\sqrt {h_{H} \left( {t_{k} } \right)h_{I} \left( {t_{k} } \right)} + \sqrt {e_{H} \left( {t_{k} } \right)e_{I} \left( {t_{k} } \right)} } \\ { + \sqrt {\begin{array}{*{20}c} {\left( {1 - m_{H} \left( {t_{k} } \right) - n_{H} \left( {t_{k} } \right)} \right)} \\ { \times \left( {1 - m_{I} \left( {t_{k} } \right) - n_{I} \left( {t_{k} } \right)} \right)} \\ \end{array} } } \\ { + \sqrt {\begin{array}{*{20}c} {\left( {1 - m_{H} \left( {t_{k} } \right) - h_{H} \left( {t_{k} } \right)} \right)} \\ { \times \left( {1 - m_{I} \left( {t_{k} } \right) - h_{I} \left( {t_{k} } \right)} \right)} \\ \end{array} } } \\ { + \sqrt {\begin{array}{*{20}c} {\left( {1 - n_{H} \left( {t_{k} } \right) - h_{H} \left( {t_{k} } \right)} \right)} \\ { \times \left( {1 - n_{I} \left( {t_{k} } \right) - h_{I} \left( {t_{k} } \right)} \right)} \\ \end{array} } } \\ \end{array} } \right] \\ & \quad \Rightarrow S_{GS} \left( {H, I} \right) \ge S_{GS} \left( {G, I} \right). \\ \end{aligned}$$

Thus if \(G \subseteq H \subseteq I\), then \(S_{GS} \left( {G, I} \right) \le S_{GS} \left( {G, H} \right)\) and \(S_{GS} \left( {G, I} \right) \le S_{GS} \left( {H, I} \right)\).

Hence \(S_{GS} \left( {G, H} \right)\) is a PF similarity measure.□

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganie, A.H., Singh, S. A picture fuzzy similarity measure based on direct operations and novel multi-attribute decision-making method. Neural Comput & Applic 33, 9199–9219 (2021). https://doi.org/10.1007/s00521-020-05682-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05682-0

Keywords

Navigation