Skip to main content
Log in

On MHD radiative Jeffery nanofluid flow with convective heat and mass boundary conditions

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The prime objective of present exploration is to study effects of magnetohydrodynamic, Joule heating and thermal radiation on an incompressible Jeffrey nanofluid flow over a linearly stretched surface. Simultaneous effects of convective heat and mass boundary conditions are also considered. Obtained system of boundary layer equations is converted into ordinary differential equations with high linearity using appropriate transformations. Analytical solutions via homotopy analysis method are obtained and deliberated accordingly. Discussion of graphs pertaining different prominent parameters is also added. Numerical values of skin friction coefficient, local Nusselt and Sherwood numbers are also given and well deliberated. It is noted that higher values of thermophoretic parameter boost temperature and concentration distributions. Moreover, temperature field is an increasing function of radiation parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\(a\) :

Dimensional constants

\(B_{0}\) :

Magnetic field strength (kg s−2A−1)

b, c :

Constants

C :

Concentration of fluid (kg m−3)

\(c_{p}\) :

Specific heat (J kg−1 K−1)

\(C_{\text{w}}\) :

Concentration on wall (kg m−3)

\(C_{\infty }\) :

Ambient concentration (kg m−3)

\(D_{\text{B}}\) :

Brownian diffusion coeff. (kg m−1 s−1)

\(D_{\text{T}}\) :

Thermophoretic diff. coeff. (kg m−1 s−1 K−1)

\(Ec\) :

Eckert number

\(f^{{\prime }}\) :

Dimensionless velocity

\(g\) :

Gravitational acceleration (m2 s−1)

\(Gr_{x}\) :

Grashoff number

\(h_{{f_{\text{t}} }}\) :

Heat transfer coefficient

\(h_{{f_{\text{c}} }}\) :

Mass transfer coefficient

\(k\) :

Thermal conductivity (W mK−1)

\(k^{ * }\) :

Mean absorption coefficient

\(Le\) :

Lewis number

M :

Magnetic parameter

N :

Concentration buoyancy parameter

\({\text{Nb}}\) :

Brownian motion parameter

\({\text{Nt}}\) :

Thermophoresis parameter

Nu x :

Nusselt number

Pr :

Prandtl number

\({\text{Rd}}\) :

Thermal radiation parameter

\(Re_{x}\) :

Reynolds number

\(Sh_{x}\) :

Sherwood number

\(T\) :

Temperature of fluid (K)

\(T_{\text{w}}\) :

Wall temperature (K)

\(T_{\infty }\) :

Ambient temperature (K)

\((u,\,v)\) :

Velocity components

\(u_{w} (x)\) :

Stretching velocity along x-axis (m s−1)

\((x,\,y)\) :

Rectangular coordinate axis (m)

\(\beta\) :

Deborah number

\(\beta_{\text{c}}\) :

Solutal expansion coefficient (m3 kg−1)

\(\beta_{\text{T}}\) :

Thermal expansion coefficient (K−1)

\(\gamma_{1}\) :

Thermal Biot number

\(\gamma_{2}\) :

Concentration Biot number

\(\lambda_{1}\) :

Fluid relaxation time

\(\lambda_{2}\) :

Fluid retardation time

\(\nu\) :

Kinematic viscosity (m2 s−1)

\(\theta\) :

Dimensionless temperature

\(\sigma^{ * }\) :

Steffan–Boltzman constant

\(\sigma\) :

Electrical conductivity (m−3 kg−1 s3 A2)

\(Cf_{x}\) :

Skin friction coefficient

\(\mu\) :

Dynamic viscosity (kg m−1 s−1)

\(\eta\) :

Similarity variable

\(\rho\) :

Density of fluid

\(\phi\) :

Dimensionless concentration

\(\delta\) :

Local buoyancy parameter

References

  1. Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME Int. Mech. Engr. Congress and Exposition, San Francisco

    Google Scholar 

  2. Saidur R, Leong KY, Mohammad HA (2011) Review on applications and challenges of nanofluids. Renew Sustain Energy Rev 15:1646–1668

    Article  Google Scholar 

  3. Sheikholeslami M, Hayat T, Alsaed A (2016) MHD free convection of Al2O3 water nanofluid considering thermal radiation: a numerical study. Int J Heat Mass Transf 96:513–524

    Article  Google Scholar 

  4. Farooq U, Zhao YL, Hayat T, Alsaedi A, Liao SJ (2015) Application of the HAM-based mathematica package BVPh 2.0 on MHD Falkner–Skan flow of nano-fluid. Comput Fluids 111:69–75

    Article  MathSciNet  Google Scholar 

  5. Khan JA, Mustafa M, Hayat T, Alsaedi A (2015) Three-dimensional flow of nanofluid over a non-linearly stretching sheet: an application to solar energy. Int J Heat Mass Transf 86:158–164

    Article  Google Scholar 

  6. Hayat T, Imtiaz M, Alsaedi A (2016) Unsteady flow of nanofluid with double stratification and magnetohydrodynamics. Int J Heat Mass Transf 92:100–109

    Article  Google Scholar 

  7. Hayat T, Waqas M, Shehzad SA, Alsaedi A (2016) A model of solar radiation and Joule heating in magnetohydrodynamic (MHD) convective flow of thixotropic nanofluid. J Mol Liq 215:704–710

    Article  Google Scholar 

  8. Abbasi FM, Shehzad SA, Hayat T, Ahmad B (2016) Doubly stratified mixed convection flow of Maxwell nanofluid with heat generation/absorption. J Magn Magn Mater 404:159–165

    Article  Google Scholar 

  9. Hayat T, Shafique M, Tanveer A, Alsaedi A (2016) Magnetohydrodynamic effects on peristaltic flow of hyperbolic tangent nanofluid with slip conditions and Joule heating in an inclined channel. Int J Heat Mass Transf 102:54–63

    Article  Google Scholar 

  10. Din STM, Jan SU, Khan U, Ahmed N (2016) MHD flow of radiative micropolar nanofluid in a porous channel: optimal and numerical solutions. Neural Comput Appl. doi:10.1007/s00521-016-2493-3

    Article  Google Scholar 

  11. Ramzan M, Bilal M (2016) Three-dimensional flow of an elastico-viscous nanofluid with chemical reaction and magnetic field effects. J Mol Liq 215:212–220

    Article  Google Scholar 

  12. Ramzan M, Inam S, Shehzad SA (2016) Three dimensional boundary layer flow of a viscoelastic nanofluid with Soret and Dufour effects. Alex Eng J 55:311–319

    Article  Google Scholar 

  13. Rashidi MM, Ali M, Freidoonimehr N, Rostami B, Anwar Hossain M (2014) Mixed convective heat transfer for MHD visco-elastic fluid flow over a porous wedge with thermal radiation. Adv Mech Eng. doi:10.1155/2014/735939

    Article  Google Scholar 

  14. Rashidi MM, Erfani E (2012) Analytical method for solving steady MHD convective and slip flow due to a rotating disk with viscous dissipation and Ohmic heating. Eng Comput 29(6):562–579

    Article  Google Scholar 

  15. Freidoonimehr N, Rashidi MM, Mahmud S (2015) Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid. Int J Therm Sci 87:136–145

    Article  Google Scholar 

  16. Hayat T, Rafiq M, Ahmad B (2016) Influences of rotation and thermophoresis on MHD peristaltic transport of Jeffrey fluid with convective conditions and wall properties. J Magn Magn Mater 410:89–99

    Article  Google Scholar 

  17. Hayat T, Qayyum S, Imtiaz M, Alsaedi A (2016) Impact of Cattaneo–Christov heat flux in Jeffrey fluid flow with homogeneous–heterogeneous reactions. PLoS ONE 11(2):e0148662

    Article  Google Scholar 

  18. Hayat T, Farooq M, Alsaedi A (2016) Characteristics of homogeneous–heterogeneous reactions and melting heat transfer in the stagnation point flow of Jeffrey fluid. J Appl Fluid Mech 9(2):809–816

    Article  Google Scholar 

  19. Hayat T, Asad S, Mustafa M, Alsaedi A (2015) MHD stagnation-point flow of Jeffrey fluid over a convectively heated stretching sheet. Comput Fluids 108:179–185

    Article  MathSciNet  Google Scholar 

  20. Hayat T, Shehzad SA, Qasim M, Obaidat S (2012) Radiative flow of Jeffery fluid in a porous medium with power law heat flux and heat source. Nucl Eng Des 243:15–19

    Article  Google Scholar 

  21. Shehzad SA, Abdullah Z, Alsaedi A, Abbasi FM, Hayat T (2016) Thermally radiative three-dimensional flow of Jeffrey nanofluid with internal heat generation and magnetic field. J Magn Magn Mater 397:108–114

    Article  Google Scholar 

  22. Hussanan A, Salleh MZ, Khan I, Tahar RM (2016) Heat and mass transfer in a micropolar fluid with Newtonian heating: an exact analysis. Neural Comput Appl. doi:10.1007/s00521-016-2516-0

    Article  Google Scholar 

  23. Rashidi MM, Momoniat E, Rostami B (2012) Analytic approximate solutions for MHD boundary-layer viscoelastic fluid flow over continuously moving stretching surface by homotopy analysis method with two auxiliary parameters. J Appl Math. doi:10.1155/2012/780415

    Article  MathSciNet  MATH  Google Scholar 

  24. Rashidi MM, Ali M, Rostami B, Rostami P, Xie GN (2015) Heat and mass transfer for MHD viscoelastic fluid flow over a vertical stretching sheet with considering Soret and Dufour effects. Math Probab Eng 2015:861065

    Article  MathSciNet  Google Scholar 

  25. Ashraf MB, Hayat T, Alsaedi A, Shehzad SA (2015) Convective heat and mass transfer in MHD mixed convection flow of Jeffrey nanofluid over a radially stretching surface with thermal radiation. J Cent South Univ 22(3):1114–1123

    Article  Google Scholar 

  26. Shehzad SA, Alsaadi FE, Monaquel SJ, Hayat T (2013) Soret and Dufour effects on the stagnation point flow of Jeffery fluid with convective boundary condition. Eur Phys J Plus 128:56

    Article  Google Scholar 

  27. Ibrahim W, Haq RU (2016) Magnetohydrodynamic (MHD) stagnation point flow of nanofluid past a stretching sheet with convective boundary condition. J Braz Soc Mech Sci 38(4):1155–1164

    Article  Google Scholar 

  28. Rahman MM, Rosca AV, Pop I (2015) Boundary layer flow of a nanofluid past a permeable exponentially shrinking surface with convective boundary condition using Buongiorno’s model. Int J Numer Methods Heat Fluid Flow 25(2):299–319

    Article  MathSciNet  Google Scholar 

  29. Ramzan M, Farooq M, Hayat T, Chung JD (2016) Radiative and Joule heating effects in the MHD flow of a micropolar fluid with partial slip and convective boundary condition. J Mol Liq 221:394–400

    Article  Google Scholar 

  30. Waqas M, Farooq M, Khan MI, Alsaedi A, Hayat T, Yasmeen T (2016) Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition. Int J Heat Mass Transf 102:766–772

    Article  Google Scholar 

  31. Ramzan M, Farooq M, Hayat T, Alsaedi A, Cao J (2015) MHD stagnation point flow by a permeable stretching cylinder with Soret–Dufour effects. J Cent South Univ 22:707–716

    Article  Google Scholar 

  32. Lopez A, Ibanez G, Pantoja J, Moreia J, Lastres O (2017) Entropy generation analysis of MHD nanofluid flow in a porous vertical microchannel with nonlinear thermal radiation, slip flow and convective-radiative boundary conditions. Int J Heat Mass Transf 107:982–994

    Article  Google Scholar 

  33. Hayat T, Imtiaz M, Alsaedi A, Kutbi MA (2015) MHD three-dimensional flow of nanofluid with velocity slip and nonlinear thermal radiation. J Magn Magn Mater 396:31–37

    Article  Google Scholar 

  34. Farooq M, Khan M, Ijaz M, Waqas M, Hayat T, Alsaedi A, Khan MI (2016) MHD stagnation point flow of viscoelastic nanofluid with non-linear radiation effects. J Mol Liq 22:1097–1103

    Article  Google Scholar 

  35. Hayat T, Qayyum S, Alsaedi A, Shafiq A (2016) Inclined magnetic field and heat source/sink aspects in flow of nanofluid with nonlinear thermal radiation. Int J Heat Mass Transf 103:99–107

    Article  Google Scholar 

  36. Shehzad SA, Hayat T, Alsaedi A, Obid MA (2014) Nonlinear thermal radiation in three-dimensional flow of Jeffrey nanofluid: a model for solar energy. Appl Math Comput 248:273–286

    MathSciNet  MATH  Google Scholar 

  37. Turkyilmazoglu M (2016) Equivalences and correspondences between the deforming body induced flow and heat in two-three dimensions. Phys Fluids 28:043102-1–043102-10

    Google Scholar 

  38. Hussain T, Shehzad SA, Hayat T, Alsaedi A, Solamy FA, Ramzan M (2014) Radiative hydromagnetic flow of Jeffrey nanofluid by an exponentially stretching sheet. PLoS ONE 9(8):e103719

    Article  Google Scholar 

  39. Shehzad SA, Hussain T, Hayat T, Ramzan M, Alsaedi A (2015) Boundary layer flow of third grade nanofluid with Newtonian heating and viscous dissipation. J Cent South Univ 22:360–367

    Article  Google Scholar 

  40. Ramzan M (2015) Influence of Newtonian heating on three dimensional MHD flow of couple stress nanofluid with viscous dissipation and Joule heating. PLoS ONE 10(4):e0124699

    Article  Google Scholar 

  41. Ramzan M, Farooq M, Alhothuali MS, Malaikah HM, Cui W, Hayat T (2015) Three dimensional flow of an Oldroyd-B fluid with Newtonian heating. Int J Numer Methods Heat Fluid Flow 25(1):68–85

    Article  MathSciNet  Google Scholar 

  42. Ramzan M, Bilal M, Chung JD (2016) Effects of MHD homogeneous–heterogeneous reactions on third grade fluid flow with Cattaneo–Christov heat flux. J Mol Liq 223:1284–1290

    Article  Google Scholar 

  43. Turkyilmazoglu M (2012) An effective approach for approximate analytical solutions of the damped Duffing equation. Phys Scr 86:015301

    Article  Google Scholar 

  44. Turkyilmazoglu M (2016) An effective approach for evaluation of the optimal convergence control parameter in the homotopy analysis method. Filomat 30(6):1633–1650. doi:10.2298/FIL1606633T

    Article  MathSciNet  MATH  Google Scholar 

  45. Turkyilmazoglu M (2015) An analytical treatment for the exact solutions of MHD flow and heat over two-three dimensional deforming bodies. Int J Heat Mass Transf 90:781–789

    Article  Google Scholar 

  46. Turkyilmazoglu M (2016) Magnetic field and slip effects on the flow and heat transfer of stagnation point Jeffrey fluid over deformable surfaces. Z Naturforsch 71(6a):549–556. doi:10.1515/zna-2016-0047

    Article  Google Scholar 

  47. Liao SJ (2010) An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun Nonlinear Sci Numer Simul 15:2003–2016. doi:10.1016/j.cnsns.2009.09.002

    Article  MathSciNet  MATH  Google Scholar 

  48. Liao SJ (2013) Homotopy analysis method in nonlinear differential equations. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

This research is supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy of Korea (No. 20132010101780).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ramzan.

Ethics declarations

Conflict of interest

Authors have no conflict of interest regarding this publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramzan, M., Bilal, M., Chung, J.D. et al. On MHD radiative Jeffery nanofluid flow with convective heat and mass boundary conditions. Neural Comput & Applic 30, 2739–2748 (2018). https://doi.org/10.1007/s00521-017-2852-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-2852-8

Keywords

Navigation