Skip to main content
Log in

Mixed convection flow of jeffrey nanofluid with thermal radiation and double stratification

  • Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

This article addresses the two-dimensional laminar boundary layer flow of magnetohydrodynamic (MHD) Jeffrey nanofluid with mixed convection. Effects of thermal radiation, thermophoresis, Brownian motion and double stratifications are taken into account. Rosseland’s approximation is utilized for the thermal radiation phenomenon. Convergent series solutions of velocity, temperature and nanoparticle concentration are developed. Graphs of dimensionless temperature and nanoparticle concentration are presented to investigate the influences of different emerging parameters. The values of skin-friction coefficient, local Nusselt and Sherwood numbers are computed and discussed for both Jeffrey and viscous fluids cases. We have observed that the temperature profile retarded for the larger values of Deborah number while an enhancement is noticed with the increasing values of ratio of relaxation to retardation times. Increasing values of thermal and nanoparticle concentration stratifications lead to a reduction in the temperature and nanoparticle concentration. The values of local Nusselt and Sherwood numbers are larger for the viscous fluid case when compared with Jeffrey fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHEN H., DING Y. Heat transfer and rheological behavior of nanofluids a review[J]. Advances in Transport Phenomena, 2009, 1: 135–177.

    Article  Google Scholar 

  2. CHOI S. U. S. Enhancing thermal conductivity of fluids with nanoparticles[C]. The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition. San Francisce, USA, 1995, 99–105.

    Google Scholar 

  3. RASHIDI M. M., BEG O. A. and ASADI M. et al. DTM-padé modeling of natural convective boundary layer flow of a nanofluid past a vertical surface[J]. Journal of Environmental Engineering, 2012, 4(1): 13–24.

    Google Scholar 

  4. TURKYILMAZOGLU M., POP I. Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect[J]. International Journal of Heat and Mass Transfer, 2013, 59(1): 167–171.

    Article  Google Scholar 

  5. KHAN W. A., MAKINDE O. D. MHD nanofluid biocon-vection due to gyrotactic microorganisms over a convectively heat stretching sheet[J]. International Journal of Thermal Sciences, 2014, 81: 118–124.

    Article  Google Scholar 

  6. SHEIKHOLESLAMI M., GORJI-BANDPY M. and GANJI D. D. MHD free convection in an eccentric semiannulus filled with nanofluid[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(4): 1204–1216.

    Article  Google Scholar 

  7. SHEIKHOLESLAMI M., GORJI-BANDPY M. and GANJI D. D. Lattice Boltzmann method for MHD natural convection heat transfer using nanofluid[J]. Powder Technology, 2014, 254(2): 82–93.

    Article  Google Scholar 

  8. IMTIAZ M., HAYAT T. and HUSSAIN M. et al. Mixed convection flow of nanofluid with Newtonian heating[J]. European Physical Journal Plus, 2014, 129(5): 1–11.

    Article  Google Scholar 

  9. HAYAT T., ABBASI F. M. and AL-YAMI M. et al. Slip and Joule heating effects in mixed convection peristaltic transport of nanofluid with Soret and Dufour effects[J]. Journal of Molecular Liquids, 2014, 194(6): 93–99.

    Article  Google Scholar 

  10. LIN Y., ZHENG L. and ZHANG X. Radiation effects on Marangoni convection flow and heat transfer in pseudoplastic non-Newtonian nanofluids with variable thermal conductivity[J]. International Journal of Heat and Mass Transfer, 2014, 77(4): 708–716.

    Article  Google Scholar 

  11. SRINIVASACHARYA D., SURENDER O. Non-Darcy mixed convection in a doubly stratified porous medium with Soret-Dufour effects[J]. International Journal of Engineering Mathematics, 2014, 2014: Article ID 126218.

    Article  Google Scholar 

  12. IBRAHIM W., MAKINDE O. D. The effect of double stratification on boundary-layer flow and heat transfer of nanofluid over a vertical plate[J]. Computers and Fluids, 2013, 86(7): 433–441.

    Article  MathSciNet  Google Scholar 

  13. HAYAT T., SHEHZAD S. A. and AL-SULAMI H. H. et al. Influence of thermal stratification on the radiative flow of Maxwell fluid[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2013, 35(4): 381–389.

    Article  Google Scholar 

  14. SRINIVASACHARYA D., UPENDAR M. Effect of double stratification on MHD free convection in a micropolar fluid[J]. Journal of the Egyptian Mathematical Society, 2013, 21(3): 370–378.

    Article  MathSciNet  Google Scholar 

  15. SHEHZAD S. A., QASIM M. and ALSAEDI A. et al. Combined thermal stratified and thermal radiation effects in mixed-convection flow of a thixotropic fluid[J]. European Physical Journal Plus, 2013, 128(1): 1–10.

    Article  Google Scholar 

  16. LIAO S. J. Homotopy analysis method in nonlinear differential equations[M]. Heidelberg, Germany: Springer and Beijing, China: Higher Education Press, 2012.

    Book  Google Scholar 

  17. ABBASBANDY S., HASHEMI M. S. and HASHIM I. On convergence of homotopy analysis method and its application to fractional integro-differential equations[J]. Quaestiones Mathematicae, 2013, 36(1): 93–105.

    Article  MathSciNet  Google Scholar 

  18. TURKYILMAZOGLU M. Solution of the Thomas-Fermi equation with a convergent approach[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(11): 4097–4103.

    Article  MathSciNet  Google Scholar 

  19. SHEHZAD S. A., ALSAEDI A. and HAYAT T. et al. Three-dimensional flow of an Oldroyd-B fluid with variable thermal conductivity and heat generation/absorption[J]. Plos One, 2013, 8(11): e78240.

    Article  Google Scholar 

  20. ABBASBANDY S., HAYAT T. and ALSAEDI A. et al. Numerical and analytical solutions for Falkner-Skan flow of MHD Oldroyd-B fluid[J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2014, 24(2): 390–401.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Abbasi.

Additional information

Biography: F. M. ABBAS (1987-), Male, Ph. D., Assistant Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, F.M., Shehzad, S.A., Hayat, T. et al. Mixed convection flow of jeffrey nanofluid with thermal radiation and double stratification. J Hydrodyn 28, 840–849 (2016). https://doi.org/10.1016/S1001-6058(16)60686-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(16)60686-8

Keywords

Navigation