Skip to main content
Log in

Magnetohydrodynamic (MHD) stagnation point flow of nanofluid past a stretching sheet with convective boundary condition

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this study, the problem of boundary layer flow of magnetohydrodynamic stagnation point flow past a stretching sheet with convective heating is examined. Condition of zero normal flux of nanoparticles at the wall for the stretched flow is the most recent phenomena that have yet to be explored in the literature. The nanoparticle fractions on the boundary are considered to be passively controlled. Similarity transformation is used to reduce the governing non-linear boundary value problems into coupled high-order non-linear ordinary differential equation. These equations were numerically solved using the function bvp4c from the matlab for different values of governing parameters. Numerical results are obtained for velocity, temperature and concentration, as well as the skin friction coefficient and local Nusselt number. The results indicate that the skin friction coefficient \(C_\mathrm{f}\) increases as the values of magnetic parameter \(M\) increase and decreases as the values of velocity ratio parameter \(A\) increase. The local Nusselt number \(\theta ^{\prime }(0)\) decreases as the values of thermophoresis parameter \(Nt\) increase and increases as the values of both Biot number \(Bi\) and Prandtl number \(Pr\) increase. A comparison with previous studies available in the literature has been done and an excellent agreement has been confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(A\) :

Velocity ratio parameter

\(B_{0}\) :

Magnetic field strength

\(Bi\) :

Biot number

\(C\) :

Concentration at the surface

\(C_\mathrm{f}\) :

Skin friction coefficient

\(C_{\infty }\) :

Ambient concentration

\(D_\mathrm{B}\) :

Brownian diffusion coefficient

\(D_\mathrm{T}\) :

Thermophoresis diffusion coefficient

\(f\) :

Dimensionless stream function

\(k\) :

Thermal conductivity

\(Le\) :

Lewis number

\(M\) :

Magnetic parameter

\(Nb\) :

Brownian motion parameter

\(Nt\) :

Thermophoresis parameter

\(Nu_{x}\) :

Local Nusselt number

\(Pr\) :

Prandtl number

\(q_{w}\) :

Wall heat flux

\(Re_{x}\) :

Local Reynolds number

\(T\) :

Temperature of the fluid inside the boundary layer

\(T_\mathrm{f}\) :

Temperature of a hot fluid

\(T_\infty\) :

Ambient temperature

\(U_{\infty }\) :

Free stream velocity

\({u},{v}\) :

Velocity component along x- and y-direction

\(\eta\) :

Dimensionless similarity variable

\(\mu\) :

Dynamic viscosity of the fluid

\(\upsilon\) :

Kinematic viscosity of the fluid

\((\rho )_\mathrm{f}\) :

Density of the basefluid

\((\rho c)_\mathrm{f}\) :

Heat capacity of the base fluid

\((\rho c)_\mathrm{p}\) :

Effective heat capacity of a nanoparticle

\(\psi\) :

Stream function

\(\alpha\) :

Thermal diffusivity

\(\sigma\) :

Electrical conductivity

\(\theta\) :

Dimensionless temperature

\(\tau _{w}\) :

Wall shear stress

\(\Gamma\) :

Parameter defined by \(\frac{(\rho c)_{\rm p}}{(\rho c)_{\rm f}}\)

\(\infty\) :

Condition at the free stream

w :

Condition at the surface

References

  1. Mahapatra TR, Gupta AG (2002) Heat transfer instagnation point flow towards a stretching sheet. Heat Mass Transf 38:517–521

    Article  Google Scholar 

  2. Ishak A, Nazar R, Pop I (2006) Mixed convection boundary layers in the stagnation point flow towards a stretching vertical sheet. Meccanica 41:509–518

    Article  MATH  Google Scholar 

  3. Hayat T, Mustafa M, Shehzad SA, Obaidat S (2012) Melting heat transfer in the stagnation-point flow of an upper-convected Maxwell (UCM) fluid past a stretching sheet. Int J Numer Methods Fluids 68:233–243

    Article  MathSciNet  MATH  Google Scholar 

  4. Choi S (1995) Enhancing thermal conductivity of fluids with nanoparticle. In: Development and applications of non-Newtonian flow, vol 66. ASME FED-vol 231/MD, pp 99–105

  5. Buongionro J (2006) Convective transport in nanofluids. J Heat Transf ASME 128(3):240–250

    Article  Google Scholar 

  6. Kuznetsov AV, Nield DA (2010) Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int J Thermal Sci 49:243–247

    Article  Google Scholar 

  7. Khan WA, Pop I (2010) Boundary layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf 53:2477–2483

    Article  MATH  Google Scholar 

  8. Bachok N, Ishak A, Pop I (2010) Boundary-layer flow of nanofluids over a moving surface in a flowing fluid. Int J Thermal Sci 49:1663–1668

    Article  Google Scholar 

  9. Hamad MA, Pop I, Ismali AI (2011) Magnetic field effects on free convection flow of a nanofluid past a verical semi-infinite flat plate. Nonlinear Anal Real World Appl 12:1338–1346

    Article  MathSciNet  MATH  Google Scholar 

  10. Ahmad S, Rohni AM, Pop I (2011) Blasius and Sakiadis problems in nanofluids. Acta Mechanica 218:195–204

    Article  MATH  Google Scholar 

  11. Makinde OD, Aziz A (2011) Boundary layer flow of a nanofluid past a stretching sheet with convective boundary condition. Int J Thermal Sci 50:1326–1332

    Article  Google Scholar 

  12. Bachok N, Ishak A, Nazar R, Pop I (2010) Flow and heat transfer at a general three-dimensional stagnation point in nanofluid. J Physica B 405:4914–4918

    Article  Google Scholar 

  13. Hamad A, Ferdows M (2012) Similarity solution of boundary layer stagnation point flow towards a heated porous stretching sheet saturated with nanofluid with heat absorption/generation and suction/blowing: A lie group analysis. Commun Nonlinear Sci Numer Simul 17:132–140

    Article  MathSciNet  MATH  Google Scholar 

  14. Nazar R, Jaradat M, Arifin M, Pop I (2011) Stagnation-point flow past a shrinking sheet in a nanofluid. Central Eur J Phys 9(5):1195–1202

    Google Scholar 

  15. Anbuchezhian N, Srinivasan K, Chandrasekaran K, Kanasamy R (2012) Thermophoresis and Brownian motion effects on boundary layer flow of nanofluid in presence of thermal stratification due to solar energy. Appl Math Mech (English Edition) 33(6):765–780. doi:10.1007/s10483-012-1585-8

  16. Mostafa M, Hayat T, Pop I, Asghar S, Obaidat S (2011) Stagnation point flow of a nanofluid towards a stretching sheet. Int J Heat Mass Transf 54:5588–5594

    Article  MATH  Google Scholar 

  17. Ibrahim W, Shankar B, Mahantesh MM (2013) MHD stagnation point flow and heat transfer due to nanofluid towards a stretching sheet. Int J Heat Mass Transf 56:1–9

  18. Ibrahim W, Shankar B (2012) Boundary-layer flow and heat transfer of nanofluid over a vertical plate with convective surface boundary condition. J Fluids Eng ASME 134(8):081203. doi:10.1115/1.4007075

    Article  Google Scholar 

  19. Ibrahim W, Makinde OD (2013) The effect of double stratification on boundary layer flow and heat transfer of nanofluid over a vertical plate. J Comput Fluids 86:433–441

    Article  MathSciNet  MATH  Google Scholar 

  20. Ibrahim W, Shankar B (2014) Magnetohydrodynamic boundary layer flow and heat transfer of a nanofluid over non-isothermal stretching sheet. J Heat Transf Trans ASME 136(5):051701. doi:10.1115/1.4026118

    Article  Google Scholar 

  21. Ibrahim W, Shankar B (2013) MHD boundary layer flow and heat transfer of a nanofluid past a permeable stretching sheet with velocity, thermal and solutal slip boundary conditions. J Comput Fluids 75:1–10

    Article  MathSciNet  MATH  Google Scholar 

  22. Ibrahim W, Shankar B (2015) MHD boundary layer flow and heat transfer due to a nanofluid over an exponentially stretching non-isothermal sheet. J Nanofluids 4(1):16–27

    Article  Google Scholar 

  23. Ibrahim W (2015) Double-diffusive in MHD stagnation point flow and heat transfer of nano fluid over a stretching sheet. J Nanofluids 4(2):157–166

    Article  Google Scholar 

  24. Ibrahim W (2015) The effect of induced magnetic field and convective boundary condition on MHD stagnation point flow and heat transfer of nanofluid over a stretching sheet. IEEE Trans Nanotechnol 14(1):178–186

    Article  Google Scholar 

  25. Ibrahim W, Makinde OD (2015) MHD stagnation point flow of a power-law nanofluid towards a convectively heated stretching sheet with slip. J Process Mech Eng (accepted for publication)

  26. Ibrahim W, Makinde OD (2015) Double-diffusive in mixed convection flow of MHD stagnation point flow and heat transfer due to nanofluid over a stretching vertical sheet. J Nanofluids 4(1):28–37

    Article  Google Scholar 

  27. Kuznetsov AV, Nield DA (2014) Natural convective boundary-layer flow of a nanofluid past a vertical plate: a revisited model. Int J Thermal Sci 77:126–129

    Article  Google Scholar 

  28. Khan ZH, Khan WA, Pop I (2013) Triple diffusive free convection along a horizontal plate in porous media saturated by nanofluid with convective boundary condition. Int J Heat Mass Transf 66:603–612

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their very sincere thanks to referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wubshet Ibrahim.

Additional information

Technical Editor: Francisco Ricardo Cunha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, W., Ul Haq, R. Magnetohydrodynamic (MHD) stagnation point flow of nanofluid past a stretching sheet with convective boundary condition. J Braz. Soc. Mech. Sci. Eng. 38, 1155–1164 (2016). https://doi.org/10.1007/s40430-015-0347-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-015-0347-z

Keywords

Navigation