Skip to main content

Advertisement

Log in

Live and heat-killed Lactobacillus rhamnosus GG upregulate gene expression of pro-inflammatory cytokines in 5-fluorouracil-pretreated Caco-2 cells

  • Original Article
  • Published:
Supportive Care in Cancer Aims and scope Submit manuscript

Abstract

Purpose

This study investigates whether post-chemotherapeutic use of live and heat-killed Lactobacillus rhamnosus GG can modulate the expression of three pro-inflammatory cytokines in 5-fluorouracil (5-FU)-induced intestinal mucositis in vitro.

Methods

Live L. rhamnosus GG and heat-killed L. rhamnosus GG were observed using scanning electron microscopy. To establish the duration required for optimal expression of tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1), and interleukin-12 (IL-12), 5 μM of 5-FU was selected to treat 10-day-old Caco-2 cells for 4, 6, 8, and 24 h. Caco-2 cells were treated with 5-FU (5 μM) for 4 h, followed by the administration of live L. rhamnosus GG (multiplicity of infection = 25), and heat-killed L. rhamnosus GG for 2 and 4 h. Finally, total cellular RNA was isolated to quantify mRNA expression of TNF-α, MCP-1, and IL-12 using real-time PCR.

Results

The results demonstrated that heat-killed L. rhamnosus GG remained structurally intact with elongation. A biphasic upregulated expression of TNF-α, MCP-1, and IL-12 was observed in 5-FU-treated Caco-2 cells at 4 and 24 h. Compared to non-L. rhamnosus GG controls in 5-FU-pretreated Caco-2 cells, a 2-h treatment of heat-killed L. rhamnosus GG significantly upregulated the MCP-1 expression (p < 0.05), and both live and heat-killed L. rhamnosus GG treatments lasting 4 h upregulated the TNF-α and MCP-1 expression (p < 0.05). Only live L. rhamnosus GG upregulated the IL-12 expression (p < 0.05).

Conclusions

Post-chemotherapeutic use of live or heat-killed L. rhamnosus GG can upregulate the gene expression of 5-FU-induced pro-inflammatory cytokines in Caco-2 cells. Human intestinal epithelium may be vulnerable to the post-chemotherapeutic use of L. rhamnosus GG in 5-FU-induced mucositis that requires further in vivo studies for clarification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Elting LS, Cooksley C, Chambers M, Cantor SB, Manzullo E, Rubenstein EB (2003) The burdens of cancer therapy. Clinical and economic outcomes of chemotherapy-induced mucositis. Cancer 98:1531–1539

    Article  PubMed  Google Scholar 

  2. Keefe DM (2004) Gastrointestinal mucositis: a new biological model. Support Care Cancer 12:6–9

    Article  PubMed  Google Scholar 

  3. Thorpe DW, Stringer AM, Gibson RJ (2013) Chemotherapy-induced mucositis: the role of the gastrointestinal microbiome and toll-like receptors. Exp Biol Med (Maywood) 238:1–6

    Article  CAS  Google Scholar 

  4. Sonis ST, Elting LS, Keefe D, Peterson DE, Schubert M, Hauer-Jensen M, Bekele BN, Raber-Durlacher J, Donnelly JP, Rubenstein EB (2004) Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients. Cancer 100:1995–2025

    Article  PubMed  Google Scholar 

  5. Chang CT, Ho TY, Lin H, Liang JA, Huang HC, Li CC, Lo HY, Wu SL, Huang YF, Hsiang CY (2012) 5-Fluorouracil induced intestinal mucositis via nuclear factor-kappaB activation by transcriptomic analysis and in vivo bioluminescence imaging. PLoS One 7:e31808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Szajewska H, Setty M, Mrukowicz J, Guandalini S (2006) Probiotics in gastrointestinal diseases in children: hard and not-so-hard evidence of efficacy. J Pediatr Gastroenterol Nutr 42:454–475

    Article  PubMed  Google Scholar 

  7. Osterlund P, Ruotsalainen T, Korpela R, Saxelin M, Ollus A, Valta P, Kouri M, Elomaa I, Joensuu H (2007) Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study. Br J Cancer 97:1028–1034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Mauger CA, Butler RN, Geier MS, Tooley KL, Howarth GS (2007) Probiotic effects on 5-fluorouracil-induced mucositis assessed by the sucrose breath test in rats. Dig Dis Sci 52:612–619

    Article  CAS  PubMed  Google Scholar 

  9. Prisciandaro LD, Geier MS, Chua AE, Butler RN, Cummins AG, Sander GR, Howarth GS (2012) Probiotic factors partially prevent changes to caspases 3 and 7 activation and transepithelial electrical resistance in a model of 5-fluorouracil-induced epithelial cell damage. Support Care Cancer 20:3205–3210

    Article  PubMed  Google Scholar 

  10. Guarner F, Schaafsma GJ (1998) Probiotics. Int J Food Microbiol 39:237–238

    Article  CAS  PubMed  Google Scholar 

  11. MacGregor G, Smith AJ, Thakker B, Kinsella J (2002) Yoghurt biotherapy: contraindicated in immunosuppressed patients? Postgrad Med J 78:366–367

    Article  PubMed Central  PubMed  Google Scholar 

  12. Li N, Russell WM, Douglas-Escobar M, Hauser N, Lopez M, Neu J (2009) Live and heat-killed Lactobacillus rhamnosus GG: effects on proinflammatory and anti-inflammatory cytokines/chemokines in gastrostomy-fed infant rats. Pediatr Res 66:203–207

    Article  CAS  PubMed  Google Scholar 

  13. Xiao SD, Zhang DZ, Lu H, Jiang SH, Liu HY, Wang GS, Xu GM, Zhang ZB, Lin GJ, Wang GL (2003) Multicenter, randomized, controlled trial of heat-killed Lactobacillus acidophilus LB in patients with chronic diarrhea. Adv Ther 20:253–260

    Article  PubMed  Google Scholar 

  14. Sonnier DI, Bailey SR, Schuster RM, Gangidine MM, Lentsch AB, Pritts TA (2012) Proinflammatory chemokines in the intestinal lumen contribute to intestinal dysfunction during endotoxemia. Shock 37:63–69

    Article  CAS  PubMed  Google Scholar 

  15. Schauer MC, Holzmann B, Peiper M, Friess H, Knoefel WT, Theisen J (2010) Interleukin-10 and -12 predict chemotherapy-associated toxicity in esophageal adenocarcinoma. J Thorac Oncol 5:1849–1854

    Article  PubMed  Google Scholar 

  16. Schüller S, Lucas M, Kaper JB, Giron JA, Phillips AD (2009) The ex vivo response of human intestinal mucosa to enteropathogenic Escherichia coli infection. Cell Microbiol 11:521–530

  17. Thirabunyanon M, Boonprasom P, Niamsup P (2009) Probiotic potential of lactic acid bacteria isolated from fermented dairy milks on antiproliferation of colon cancer cells. Biotechnol Lett 31:571–576

    Article  CAS  PubMed  Google Scholar 

  18. Jordan A, Stein J (2003) Effect of an omega-3 fatty acid containing lipid emulsion alone and in combination with 5-fluorouracil (5-FU) on growth of the colon cancer cell line Caco-2. Eur J Nutr 42:324–331

    Article  CAS  PubMed  Google Scholar 

  19. Haller D, Blum S, Bode C, Hammes WP, Schiffrin EJ (2000) Activation of human peripheral blood mononuclear cells by nonpathogenic bacteria in vitro: evidence of NK cells as primary targets. Infect Immun 68:752–759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Saegusa S, Totsuka M, Kaminogawa S, Hosoi T (2007) Cytokine responses of intestinal epithelial-like Caco-2 cells to non-pathogenic and opportunistic pathogenic yeasts in the presence of butyric acid. Biosci Biotechnol Biochem 71:2428–2434

    Article  CAS  PubMed  Google Scholar 

  21. Murzyn A, Krasowska A, Augustyniak D, Majkowska-Skrobek G, Lukaszewicz M, Dziadkowiec D (2010) The effect of Saccharomyces boulardii on Candida albicans-infected human intestinal cell lines Caco-2 and Intestin 407. FEMS Microbiol Lett 310:17–23

    Article  CAS  PubMed  Google Scholar 

  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  23. Logan RM, Stringer AM, Bowen JM, Yeoh AS, Gibson RJ, Sonis ST, Keefe DM (2007) The role of pro-inflammatory cytokines in cancer treatment-induced alimentary tract mucositis: pathobiology, animal models and cytotoxic drugs. Cancer Treat Rev 33:448–460

    Article  CAS  PubMed  Google Scholar 

  24. Naidu MU, Ramana GV, Rani PU, Mohan IK, Suman A, Roy P (2004) Chemotherapy-induced and/or radiation therapy-induced oral mucositis—complicating the treatment of cancer. Neoplasia 6:423–431

    Article  PubMed Central  PubMed  Google Scholar 

  25. Sakai H, Sagara A, Matsumoto K, Hasegawa S, Sato K, Nishizaki M, Shoji T, Horie S, Nakagawa T, Tokuyama S, Narita M (2013) 5-Fluorouracil induces diarrhea with changes in the expression of inflammatory cytokines and aquaporins in mouse intestines. PLoS One 8:e54788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Ferreira TM, Leonel AJ, Melo MA, Santos RR, Cara DC, Cardoso VN, Correia MI, varez-Leite JI (2012) Oral supplementation of butyrate reduces mucositis and intestinal permeability associated with 5-fluorouracil administration. Lipids 47:669–678

    Article  CAS  PubMed  Google Scholar 

  27. Shiota A, Hada T, Baba T, Sato M, Yamanaka-Okumura H, Yamamoto H, Taketani Y, Takeda E (2010) Protective effects of glycoglycerolipids extracted from spinach on 5-fluorouracil induced intestinal mucosal injury. J Med Invest 57:314–320

    Article  PubMed  Google Scholar 

  28. Soares PM, Lima-Junior RC, Mota JM, Justino PF, Brito GA, Ribeiro RA, Cunha FQ, Souza MH (2011) Role of platelet-activating factor in the pathogenesis of 5-fluorouracil-induced intestinal mucositis in mice. Cancer Chemother Pharmacol 68:713–720

    Article  CAS  PubMed  Google Scholar 

  29. Reinecker HC, Loh EY, Ringler DJ, Mehta A, Rombeau JL, MacDermott RP (1995) Monocyte-chemoattractant protein 1 gene expression in intestinal epithelial cells and inflammatory bowel disease mucosa. Gastroenterology 108:40–50

    Article  CAS  PubMed  Google Scholar 

  30. Mahoney SE, Davis JM, Murphy EA, McClellan JL, Gordon B, Pena MM (2013) Effects of 5-fluorouracil chemotherapy on fatigue: role of MCP-1. Brain Behav Immun 27:155–161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Sergent T, Piront N, Meurice J, Toussaint O, Schneider YJ (2010) Anti-inflammatory effects of dietary phenolic compounds in an in vitro model of inflamed human intestinal epithelium. Chem Biol Interact 188:659–667

    Article  CAS  PubMed  Google Scholar 

  32. Lan JG, Cruickshank SM, Singh JC, Farrar M, Lodge JP, Felsburg PJ, Carding SR (2005) Different cytokine response of primary colonic epithelial cells to commensal bacteria. World J Gastroenterol 11:3375–3384

    CAS  PubMed  Google Scholar 

  33. Kaufman HL, Swartout BG, Horig H, Lubensky I (2002) Combination interleukin-2 and interleukin-12 induces severe gastrointestinal toxicity and epithelial cell apoptosis in mice. Cytokine 17:43–52

    Article  CAS  PubMed  Google Scholar 

  34. Jun CD, Kim Y, Choi EY, Kim M, Park B, Youn B, Yu K, Choi KS, Yoon KH, Choi SC, Lee MS, Park KI, Choi M, Chung Y, Oh J (2006) Gliotoxin reduces the severity of trinitrobenzene sulfonic acid-induced colitis in mice: evidence of the connection between heme oxygenase-1 and the nuclear factor-кB pathway in vitro and in vivo. Inflamm Bowel Dis 12:619–629

    Article  PubMed  Google Scholar 

  35. Zhao J, Huang L, Belmar N, Buelow R, Fong T (2004) Oral RDP58 allows CPT-11 dose intensification for enhanced tumor response by decreasing gastrointestinal toxicity. Clin Cancer Res 10:2851–2859

    Article  CAS  PubMed  Google Scholar 

  36. Mattick KL, Rowbury RJ, Humphrey TJ (2003) Morphological changes to Escherichia coli O157:H7, commensal E. coli and Salmonella spp in response to marginal growth conditions, with special reference to mildly stressing temperatures. Sci Prog 86:103–113

    Article  PubMed  Google Scholar 

  37. Donato KA, Gareau MG, Wang YJ, Sherman PM (2010) Lactobacillus rhamnosus GG attenuates interferon-γ and tumour necrosis factor-α-induced barrier dysfunction and pro-inflammatory signalling. Microbiology 156:3288–3297

    Article  CAS  PubMed  Google Scholar 

  38. Szajewska H, Skorka A, Ruszczynski M, Gieruszczak-Bialek D (2007) Meta-analysis: Lactobacillus GG for treating acute diarrhoea in children. Aliment Pharmacol Ther 25:871–881

    Article  CAS  PubMed  Google Scholar 

  39. Nomoto K, Yokokura T, Nomoto K (1992) Prevention of 5-fluorouracil-induced infection with indigenous Escherichia coli in tumor-bearing mice by nonspecific immunostimulation. Can J Microbiol 38:774–778

    Article  CAS  PubMed  Google Scholar 

  40. Fang HW, Fang SB, Chiang Chiau JS, Yeung CY, Chan WT, Jiang CB, Cheng ML, Lee HC (2010) Inhibitory effects of Lactobacillus casei subsp. rhamnosus on Salmonella lipopolysaccharide-induced inflammation and epithelial barrier dysfunction in a co-culture model using Caco-2/peripheral blood mononuclear cells. J Med Microbiol 59:573–579

    Google Scholar 

  41. Von BI, Adlerberth I, Wold AE, Dahlen G, Jontell M (2003) Oral and intestinal microflora in 5-fluorouracil treated rats, translocation to cervical and mesenteric lymph nodes and effects of probiotic bacteria. Oral Microbiol Immunol 18:278–284

    Article  Google Scholar 

  42. Smith CL, Geier MS, Yazbeck R, Torres DM, Butler RN, Howarth GS (2008) Lactobacillus fermentum BR11 and fructo-oligosaccharide partially reduce jejunal inflammation in a model of intestinal mucositis in rats. Nutr Cancer 60:757–767

    Google Scholar 

Download references

Acknowledgments

This study was funded by the Taipei Medical University (TMU101-AE1-B64), the National Health Research Institutes (ME-101-PP-12), and the National Taipei University of Technology (NTUT-MMH-101-07). We thank Professor Liang-Shun Wang, Dr. Wei-Ming Chi, and Dr. Chi-Tai Yeh for their assistance in the laboratory.

Conflict of interest

I, Shiuh-Bin Fang, state that there is no conflict of interest associated with this manuscript. I declare that I have no financial relationship with the organizations that funded the research. The authorship of this manuscript is as described in the attached Authorship/Disclosure form, with myself as the first author. I have full control of all primary data related to this manuscript and agree to allow the journal to review the data if necessary.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiuh-Bin Fang or Hsu-Wei Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, SB., Shih, HY., Huang, CH. et al. Live and heat-killed Lactobacillus rhamnosus GG upregulate gene expression of pro-inflammatory cytokines in 5-fluorouracil-pretreated Caco-2 cells. Support Care Cancer 22, 1647–1654 (2014). https://doi.org/10.1007/s00520-014-2137-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00520-014-2137-z

Keywords

Navigation